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Abstract.

Changes in neural connectivity are thought to underlie the most permanent forms of memory in the brain. We
consider two models, derived from the clusteron (Mel, 1992), to study this method of learning. The models show
a direct relationship between the speed of memory acquisition and the probability of forming appropriate synaptic
connections. Moreover, the strength of learned associations grows with the number of fibers that have taken part in
the learning process. We provide simple and intuitive explanations of these two results by analyzing the distribution
of synaptic activations. The obtained insights are then used to extend the model to perform novel tasks: feature
detection, and learning spatio-temporal patterns. We also provide an analytically tractable approximation to the
model to put these observations on a firm basis. The behavior of both the numerical and analytical models correlate
well with experimental results of learning tasks which are thought to require a reorganization of neuronal networks.

Keywords: Structural Plasticity, Synaptic Plasticity, LTP, LTD, Dendritic Integration, Spatial Summation

1. Introduction

Neurons receive and integrate information in the form of synaptic conductances across their den-
dritic trees. Synaptic input is characterized by the spatial and temporal distribution of active
synapses, and by the strength and timecourse of individual synaptic conductances. Learning at the
level of single neurons may reflect changes in both the strength and the spatial pattern of synaptic
connections.

Recent experimental and theoretical studies have helped establish the importance of active den-
dritic properties in information processing (Häusser and Mel, 2003; London and Häusser, 2005; Euler
and Denk, 2001). It is now well known that dendrites contain a host of voltage-dependent con-
ductances (Johnston et al., 1996; Hoffman et al., 1997; Golding and Spruston, 1998; Huguenard
et al., 1989; Magee, 1999; Westenbroek et al., 1992; Yasuda et al., 2003), which play an important
role in coincidence detection (Stuart and Hausser, 2001) and normalization of temporal summa-
tion (Magee, 1999). Moreover, theoretical work has suggested that nonlinear summation of inputs
greatly increases the memory capacity of neurons (Poirazi and Mel, 2001; Poirazi et al., 2003).

Nonlinear summation of synaptic conductances by active dendrites, along with the decay of
synaptic potentials with distance from the site of transmitter release, imparts the cell with a sensitiv-
ity to spatially clustered inputs (Mel, 1992; Losonczy and Magee, 2006; Polsky et al., 2004; Larkum
et al., 1999; Wei et al., 2001). Spatial patterns of synaptic inputs containing clusters of nearby
synapses will activate voltage-dependent currents more strongly than patterns with distributed
synapses. Thus, a rearrangment of synaptic positions along the dendritic tree can profoundly alter

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

Primary LaTeX file
Click here to download Manuscript: clusteron7-09.tex



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2

the response of the postsynaptic neuron even when other characteristics of the presynaptic input
are unaltered (Mel, 1992; Poirazi and Mel, 2001).

Despite these observations, systems that learn by synaptic rearrangement have received little
attention. An exception is the clusteron (Mel, 1992). This neuron model abandons all changes in
synaptic weights in favor of learning by synaptic rearrangement. It is thus an excellent choice to
evaluate the strengths and limitations of synaptic reorganization as a learning paradigm.

The goal of the present study was to develop a mathematical framework that can be used to
describe and analyze the clusteron and other models that learn through structural changes. Within
this framework we investigated the mechanisms and learning rate characteristics of the clusteron
in two basic configurations: one similar to the original clusteron (Mel, 1992), and one consisting of
discrete bins of integration, abstractions of the computational subunits of a dendritic tree (Poirazi
and Mel, 2001; Wei et al., 2001).

Once the mechanism of learning is understood, the model can be extended to perform other
tasks. We first show how the introduction of simple temporal dynamics results in a model capable
of learning spatio-temporal patterns. We then show how the conditions for synaptic rearrangement
can be changed to create models that either respond to a common feature in the set of training
patterns, or the distinguishing features of each pattern in the set.

Our analysis reveals a general feature of synaptogenesis: the length of time needed to learn an
association, and the ultimate strength of the association, are both dependent on the likelihood
of forming an appropriate synaptic connection. The contributions of the individual synapses to
the output follows a Gaussian distribution, and an approximation can be made that displays the
relations to learning rate and association strength explicitly. Analyzing the distribution of synap-
tic activations, yields a clearer understanding of the principles underlying learning by structural
rearrangement.

2. Methods

The clusteron differs from most other neuronal models in the literature in that learning is a result of
changes in the physical arrangement of synapses on the cell, rather than changes in the individual
synaptic weights. Its primary feature is that the contribution of an individual synapse to postsy-
naptic activation (e.g., depolarization) is modulated by a nonlinear function of the total number
of active synapses in its vicinity. Because the number of active synapses and the synaptic weights
are kept constant, only changes in the spatial pattern of synaptic activation result in differential
postsynaptic responses.

2.1. Structure of the clusteron

We consider a dendritic tree on which N synaptic connections have been formed by N numbered,
afferent fibers. We refer to a collection of fibers that are activated by a stimulus as an input pattern.
Mathematically, an input pattern v ∈ {0, 1}N is an N -vector of 1s and 0s so that if vi = 1, then
the i-th afferent fiber is active in the given pattern. The synaptic connections these fibers make on
the cell are described by an injective function φ : {1, 2, . . . , N} → {1, 2, . . . , N} that is independent
of the input pattern v. Therefore, φ(i) = j implies that fiber i innervates the synapse j, and,
similarly, φ−1(j) = i implies that synapse j receives an input from fiber i. During training, the
set of input patterns {vi} remains unchanged, meaning that each pattern vi represents firing of a
consistent population of presynaptic cells, i.e. activation of a consistent set of fibers. However, the
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3

locations at which afferent fibers innervated the cell, represented by φ, did change during learning.
For notational reasons it was easier to change the inverse φ−1 rather than φ directly.

We used two versions of the model: The first, illustrated schematically in Fig. 1b), was similar
to the original clusteron (Mel, 1992) and contained a cell body and a single dendrite with many
synapses. The impact of an active synapse was boosted as a function of the activity of other synapses
that lay within a certain radius. The second, “branched” model, presented schematically in Fig. 1c),
can be thought of as a reduction of a two-layer model of dendritic integration (Poirazi et al., 2003).
Rather than a single dendrite, it contained non-overlapping regions that partitioned the dendrite
into “bins”, which can be thought of as separate dendritic branches (Poirazi and Mel, 2001; Wei
et al., 2001). Synapses within a branch interacted nonlinearly, but the total depolarization was a
linear combination of individual branch activity. The two variants behaved similarly, but differed
in several important ways discussed below.

V = {0, 0, 1, 1, 0, 1, 0, 0, 1}

φ φ−1

{1, 0, 1, 0, 0, 1, 1, 0, 0}

a.

b.

1 2 3 4 5 6 7 8 9

ai
(i=3)

1

2

3

4

5

6

7

8

9

c.

Figure 1. a) The function φ, maps the input vector, v, to locations on the dendrite. The training paradigm modifies
φ. In this example: φ(1)=5, φ(2)=2, φ(3)=6, φ(4)=3, φ(5)=8, φ(6)=1, φ(7)=9, φ(8)=4, φ(9)=7. b) Schematic of the
original clusteron with a single dendrite. Active inputs are shown in red and are consistent with the example mapping
shown in panel a). Total synaptic activation is determined by the activity of of nearby synapses (see Eq. (1)). Shown
is window D3 of radius K = 1 around synapse 3. c) Schematic of the branched version of the clusteron. The input
vector is mapped onto the ‘branches of the cell. Nonlinear interactions occur only within a branch (see Eq. (2)), so
that synapses 6 and 7, which would interact in the unbranched case, now do not interact. Conversely, synapses 1 and
3 now do interact, whereas in the unbranched case they were too far apart.
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The total somatic activation, analogous to the membrane potential at the cell body induced
by an input pattern, was calculated as follows: In the first model the activity of synapse i was
modulated by all synapses within a given physical radius of its location. We denoted the set of all
synapses that affected the activity of synapse i by Di. Since synapses were numbered sequentially,
we set Di = {1 ≤ j ≤ N |i − K ≤ j ≤ i + K} where K is the radius of Di (see Fig. 1b). The
activation due to synapse i, given an input pattern v, was

ai(v,φ) = vφ−1(i)

∑

j∈Di

vφ−1(j). (1)

Therefore, the synaptic activation was the product of synapse i’s own input, either 1 or 0, and the

sum of all other inputs in Di. This can be generalized to ai(v,φ) = vφ−1(i)F
(

∑

j∈Di
vφ−1(j)

)

. The

form of F modulates the summation, and it can be chosen to model sublinear spatial summation,
as in the case of a passive cell (Rall, 1977). We only considered F (x) = x and typically chose 1000
input lines and a radius of integration that included 20 synapses or more.

In the branched model, the activation of whole branches, rather than single synapses is used to
determine the somatic activation. In particular, the activation of branch m was given by

bm(v,φ) =





k
∑

j=1

vφ−1(j)





2

. (2)

As in the previous case, this can be generalized to bm(v,φ) = G(
∑k

j=1 vφ−1(j)). We chose G(x) = x2

for consistency with the unbranched version of the model.
The total somatic activation was obtained as a sum of all N individual synaptic activations

in the first, and as a sum over all M branch activations in the branched model. In particular, the
depolarization W (v,φ) at the soma due to an input pattern v and an arrangement of afferent fibers
φ was given for the two models respectively by

W1(v,φ) =
N

∑

i=1

ai(v,φ), and W2(v,φ) =
M
∑

i=1

bi(v,φ). (3)

2.2. Learning

In both models, a supervised learning protocol selectively stabilized the most highly-active synapses.
The training protocol was divided into a number of “epochs”, each consisting of alternating pre-
sentation of the training patterns followed by a judgment of synaptic suitability. An epoch ended
with the spatial rearrangement of poorly performing synapses.

More precisely, let aj
i be the activation of synapse i in response to the j-th pattern in an epoch.

In the first model the average activation āi over all P training patterns presented during an entire
epoch, āi = 1/P

∑P
j=1 aj

i , was compared to a threshold value ζ. If āi > ζ, the fiber afferent to the
synapse was fixed, i.e φ−1(i) remained unchanged. The choice of ζ is discussed below.

The indices i of all synapses whose activation was insufficient, that is āi ≤ ζ, formed a set R.
To redefine φ−1 on R, we chose a bijective function H : R → R, and redefined φ using

φ−1
new(i) =

{

φ−1
old(i) if āi > ζ

H(i) if āi ≤ ζ.
(4)
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We chose H randomly, and allowed it to change between training epochs (Mel, 1992). Different
choices for H reflecting the targeting of certain locations on the dendrite could also be consid-
ered (Govindarajan et al., 2006).

Synapses located in regions with a higher density of active synapses, i.e. active clusters, would
attain higher values of synaptic activation and were rewarded by stabilization. Isolated synapses
had smaller activations, and were moved to potentially join established clusters or nucleate new
ones. This protocol was iterated throughout the simulation.

The protocol for the branched model was similar, however suitability was determined at the
branch level: If the average branch activation over a training epoch (see Eq. (2)) exceeded a
threshold, then all synapses on that branch were stabilized. If not, all synapses on the branch
became part of the pool R, and were reshuffled according to Eq. (4). Consequently, synapses were
only stabilized by collectively pushing a branch activation over threshold, and not by joining an
existing stable branch. This assumption simplified the subsequent analysis. Alternate forms of
learning in the branched model resulted in qualitatively similar behavior.

The choice of the threshold ζ had a large impact on model performance. We will discuss cases
in which ζ was fixed, and cases in which ζ varied as a function of the average synaptic activation,
thereby introducing synaptic competition. In the case of a variable threshold, its value was typically
given by the mean synaptic activation, or a fraction thereof.

2.3. Sequence presentation

Both the standard and branched models could be extended to allow for presentations of spatio-
temporal patterns. Sequences V = (v1, . . . ,vL), of spatial patterns vi described above, were
presented during each training epoch. The somatic activation W (pn,φ) in response to the n-th
pattern in a sequence was obtained using Eq. (3) and

pn = vn + αpn−1 0 < α < 1, (5)

and p0 = v0. A fraction α of the raw input due to the preceding pattern was held over to compute
the synaptic activation of the present pattern. Thus, the activation function reflected not only the
spatial contiguity, but also temporal contiguity of synaptic activations. We considered a spatio-
temporal pattern to have been learned if the somatic activation of the training sequence exceeded
the activation induced by all other permutations of the training sequence, as well as those of a
sequence of random patterns.

The learning algorithm was equivalent to that described in the previous section. An epoch
consisted of a single presentation of the training sequence. However, the synaptic activation upon
the presentation of the final pattern in the sequence, rather that average activation, was used to
determine the suitability of a synapse. Therefore, if the training sequence consisted of L patterns,
then all synapses satisfying aL

i < ζ were reshuffled.

3. Results

We next present an intuitive description of learning in the two versions of the clusteron, and use
these insights to develop and analyze several extensions of the learning rule. As implied by the name,
the spatial clustering of synapses was crucial for the correct recognition of learned patterns (Mel,
1992). The nonlinear interaction between clustered synapses resulted in higher somatic activations
than those evoked by arbitrary patterns (Fig. 2a). We make these observations more precise by
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considering the distribution of the activations of synapses in the model. The evolution of this
distribution during training is then fully described in a reduced model.

3.1. Distribution of synaptic activations and learning

We begin by describing the distribution of synaptic activations in the clusteron and how it changes
during training. Note that the activation of synapse i, given by Eq. (1), is directly proportional to
the number of active synapses in its neighborhood. Therefore, the degree of clustering of synapses
activated by an input pattern can be represented by the frequency histogram of synaptic activations.

Synapses distributed randomly in space resulted in an approximately normal distribution of
activations (Fig. 2b). Since, in our simulations, the total fraction of active synapses was small
(typically 15%), and the windows of interacting synapses were large (typically K = 20), synaptic
activations approximately followed a binomial distribution, parameterized by the number of active
synapses Nactive, and the probability of randomly choosing a specific window of integration (i.e. K

N ).
Since the number of active synapses is large, this binomial distribution was well approximated by a
normal distribution. Note, synapses not active in any patterns are not affected by restructuring (see
Eq. (1)). The large peak at 0 due to such synapses was omitted from synaptic activation histograms
for clarity.

Histograms of synaptic activation (e.g., Fig. 2b) demonstrated several important features. Pat-
terns that activated clusters, contained a higher number of highly activated synapses. The cor-
responding distributions therefore lie to the right of those corresponding to patterns activating a
random subset of synapses (Fig. 2b).

The learning threshold, represented by a vertical line in all figures, separated synapses to the left
that were reshuffled, and those to the right that are fixed at the end of a training epoch (see Eq. (4)).
Fig. 2b) shows the result of training in the case of a fixed learning threshold. As synapses were
reshuffled randomly, they occasionally experienced increased activation due to joining an existing
cluster or nucleating a new one. If this activation was above the learning threshold, the synapse
was fixed. Therefore, during training the learning protocol resulted in a gradual rightward shift of
the distribution of synaptic activations. When the activation of all synapses lay above threshold
the system reached equilibrium.

The choice of the learning threshold was critical in determining how well and how fast the model
learned. High thresholds lead to the best learning, i.e. the largest increase in somatic responses
to the training patterns. However, the time for an equilibrium to be reached was typically long.
Alternatively, low thresholds lead to rapid learning, but resulted in relatively small increases in the
somatic response. Fig. 3a) shows examples of the somatic response during the course of training,
under three different threshold levels. The branched clusteron and other variations that were tested
show the same relationships between learning speed and magnitude to the learning threshold (See
Fig. 3b).

This relationship can be explained intuitively by considering the effect of the threshold on the
evolution of the synaptic activation distribution. If the threshold is low, the main mass of the
distribution would lie above it. Moreover, even synapses with activations below threshold would
only need a small boost to cross it. Therefore, training resulted in rapid equilibration, but only an
incremental increase in the total activity. In the case of a high threshold synapses needed a large
boost in their activation to be stabilized. Random reshuffling rarely resulted in such large increases,
and equilibrium was reached more slowly. However, once the distribution lay to the right of a high
threshold the total activation could be very high.
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Figure 2. a) The location of the 150 active synapses activated by each of four training patterns before (lower of the
pairs) and after (higher of the pairs) training. After 100 training epochs, the active synapses formed clusters along
the dendrite. The x-axis represents distance along the dendrite. b) Histograms of synaptic activations for all active
synapses before and after training. Before training, the activations approximately followed a normal distribution.
The vertical line represents the learning threshold used in this simulation. During training, synapses formed clusters,
causing a rightward shift in the distribution. Note, the peak of synaptic activations corresponding to 0 doesn’t change
with training and was removed for clarity.

This argument assumes that the learning threshold is constant during training. However, as
discussed in 2.2, the threshold can be set to increase with the magnitude of the somatic activation,
in a way similar to the BCM learning rule (Bienenstock et al., 1982). Such increasing thresholds
lead to competition between synapses: If the threshold increased sufficiently rapidly, at the end of
each training epoch only a fixed fraction of the synapses was stabilized. Therefore, the activity of
synapses that were stable at the end of a previous epoch could fall below the increasing threshold as
they are outperformed by newly reshuffled synapses. In contrast, with a fixed threshold , synapses
that crossed the threshold were stabilized forever.

Such variable thresholds resulted in rapid learning and a large response to learned patterns
(Fig. 3c). During the early stages of training, the threshold was low, allowing rapid nucleation of
clusters. During the later stages the threshold increased with the mean synaptic activation, and
resulted in large increases in the learned response.

3.2. Sequence learning

The observations made in the previous section can be used to to obtain a modification of the clus-
teron algorithm capable of learning spatiotemporal patterns of input. Upon following the learning
paradigm described in section 2.3 with a sequence of inputs V = (v0,v1, . . . ,vL), the presentation
of the sequence of patterns in correct order resulted in the largest somatic activation (see Fig. 4).

The distribution of synaptic activations again clarifies the underlying mechanism. Eq. (5) indi-
cates that the contribution of a pattern to the activation of a synapse decreases exponentially in
time. If each pattern activated a small subset of synapses, then after the presentation of the n-th pat-
tern the distribution of synaptic activations could be decomposed into n parts, each corresponding
to one pattern in the sequence (see Fig. 4b). When latter patterns in the sequence were presented,
synapses activated by earlier patterns had decayed to the lower part of this distribution. Since the
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Figure 3. a) The increase in the somatic response during training strongly depended on the learning threshold. Low
thresholds lead to rapid learning, while high thresholds resulted in longer equilibration times. However, high thresholds
resulted in the strongest responses to learned patterns. b) The branched model showed the same relationships for
learning speed and magnitude. The vertical scale is different in the two cases. Since all synapses on a branch are fixed
after its activation exceeds threshold, the increase in the activation during training is smaller in the branched model.
c) A strong response could be evoked rapidly by using a variable threshold. Here the learning threshold equaled the
mean synaptic activation of the active synapses.

activation of each synapse was compared to a single learning threshold at the time of presentation of
the last pattern, each pattern had undergone a variable degree of exponential decay, and therefore
experienced a different drive to cluster. As a result, synapses activated by latter patterns in the
sequence became the most clustered and resulted in the largest single pattern responses. Thus, the
training sequence was then represented on the cell model by patterns of increasing clustering, which
resulted in the largest somatic responses.(Fig. 4c).

Interestingly, changes in the choice of threshold had a large impact on this outcome. For example,
a fixed threshold resulted in higher responses to the sequence V presented in reverse order, while a
variable threshold, resulted in a preference for the proper order. The explanation of this is that with
a fixed threshold, and therefore no synaptic competition, the steady-state degree of clustering was
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Figure 4. a. The response of the clusteron to a learned spatio-temporal sequence. The response to the sequence
presented in the proper order was highest. Also shown is the response to the sequence presented in reverse order
(red trace) and the response to a sequence of four random patterns. b. The distribution of synaptic activations right
after the presentation of the last pattern is multimodal. Synapses activated by earlier patterns in the sequence have
activation that lie farther below the learning threshold (the vertical bar) and experienced a smaller drive to cluster.
c. The location of active synapses for the four patterns in the training sequence after training. Note that clusters
for different spatial patterns formed on overlapping regions of the dendrite, so that synaptic activation was boosted
when the patterns were presented sequentially.

similar to the degree of clustering when the model was trained with a single pattern, resulting in the
best clustering of patterns with the highest relative learning threshold. On the other hand, when
only a limited number of synapses can be stabilized at a time, an advantage was gained by latter
patterns in the sequence, that clustered rapidly because of a low relative learning threshold. In both
cases, the preferred sequence was one in which patterns are presented in the order of increasing
clustering.

3.3. Feature detection

A system trained to respond to a set of patterns, such as faces, can do so in two distinct ways:
It can respond to a specific feature of each pattern in the training set (such as a scar or other
distinguishing mark). Alternatively, the system can respond to a feature shared by all patterns in
the training set (all faces in the training set may feature a nose). In this section we show that the
clusteron can be trained to respond to either the shared features or specific features of the patterns
in the training set.
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As an example, consider the two patterns shown on the top of Fig. 5a). The two input patterns
in the figure each activated 25% of the fibers that synapsed on the dendrite. Moreover, half of
the fibers activated by one pattern are also activated by the other. The fibers activated only by
pattern 1 are denoted s1, those activated only by pattern 2 are denoted s3, and those activated by
both patterns are denoted s2. All of these sub-patterns consist of 12.5% of the total fibers. Also
shown are pattern s4 composed of fibers not activated by either pattern in the training set, and a
random pattern of 12.5% of the fibers. Note that this figure illustrates the patterns of fibers that
are activated, and does not indicate the location of the activated synapses on the dendrite. While
a pattern always activates the same fibers, their synaptic contacts change during training.

Pattern s2 can be obtained by performing a logical AND operation on the two training patterns,
and represents their common or shared features. Similarly, patterns s1 and s3 can be obtained by
obtaining a logical XOR operation and represent specific features of the first and second training
pattern respectively. Fig. 5b) illustrates that different choice of learning threshold will lead the
clusteron to preferentially respond to either shared or common features of the training set.

An examination of the distribution of synaptic activations again reveals the mechanism behind
this type of learning. Fig. 5c) shows a histogram of synaptic activations used to decide which
synapses are reshuffled at the end of the training epoch. Since the total synaptic activation is
averaged over a training epoch (see section 2.2), the distribution is bimodal. One part consists of
synapses activated by only one of the patterns and contains 2/3 of the total mass of the distribution.
The other part consists of synapses activated by both patterns.

If the threshold is high, only synapses participating in both patterns were likely to attain average
activations exceeding threshold upon reshuffling. Therefore, only synapses activated by the pattern
s2 were likely to be stabilized and experience a drive to cluster. Similarly, if the threshold was low,
synapses participating in both patterns typically had average activations that already exceeded
threshold. Therefore, only synapses activated by a single pattern experienced a drive to cluster
that lead to an increase in activation.

We note that this effect depends crucially on the assumption that synaptic activation is averaged
over an entire training epoch. Alternatively, we can normalize the activity by the number of patterns
in which a synapse participates

āi =

∑P
j=1 aj

i
∑P

j=1 φ
−1(i, j)

.

In this case, the distribution of activations becomes unimodal, and the model will tend to respond
to any feature of the training patterns. These two measures of synaptic activation could represent
different timecourses of input integration. Averaging synaptic activation over time requires a mem-
ory of previous pattern presentations and could be explained by a long-lived biochemical change
due to the pattern presentation. Normalizing synaptic activation would only require that there be
no such changes, or merely that pattern presentation is sufficiently slow enough to outlive such
changes.

Interestingly, this type of feature detection was not seen in the branched clusteron. Intuitively,
the activity of entire branches is too coarse a measure to discriminate patterns at the level of single
fiber activity.

3.4. A reduced model

We next developed an analytically tractable reduction of the branched model that described how
the distribution of synaptic activations evolved towards a steady state with repeated presentations



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11

0%

100%

200%

300%

400%

500%

s1 s2 s3 s4 random

Low Threshold

High Threshold

b.

Training Patterns

Composition

Test patterns
s1

s2

s3

s4

a.

s1 s2 s3 s4

0

40

80

120

160

0 10 20 30 40

Segments 1 & 3
Segment 2

0

40

80

120

160

0 10 20 30 40
0

40

80

120

160

0 10 20 30 40

low threshold high threshold

c.

Figure 5. a) Schematic of the training and testing patterns, showing the four possibilities for the activity of each
synapse. Out of 4,000 fibers, 1,000 were activated by each training pattern, with 500 activated by both patterns.
A fiber could be active by both training patterns (s1 and s3), one pattern only (s2), or neither pattern. The fifth
test pattern is composed of 500 randomly chosen fibers. b) Bar graph of the total somatic response to the five test
patterns, normalized to the response to random untrained patterns. Training with a high threshold resulted in high
responses to features common to both patterns, while a low threshold resulted in larger responses to specific features.
c) The histograms of synaptic activations can be used to illustrate the underlying mechanism. Synapses activated by
both patterns have higher average activations requiring a high learning threshold to stimulate significant clustering.
Similarly, synapses active in only one pattern were best stimulated to cluster by a lower learning threshold.

of a training pattern. The reduced and branched model were qualitatively similar, and exhibited
the same trends in the speed and magnitude of learning.

Given a branched clusteron with B branches and A active synapses randomly distributed across
the branches, the binomial theorem can be used to approximate the distribution of the number of
synapses per branch and hence the distribution of branch activations: Let n0 = A and m0 = B be
the initial number of active synapses and branches respectively. The training protocol called for the
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redistribution of the fibers lying on insufficiently active branches, that is those that contain less than
Aζ active synapses. These fibers were redistributed among the same set of branches. This procedure
was repeated after every training epoch. In particular, after the k-th training epoch, there were mk

branches that contained less than Aζ synapses per branch and thus were insufficiently activated.
Here Aζ is the integer part of

√
ζ (see Eq. (2)). At the end of a training epoch the nk synapses

residing on these branches were then redistributed randomly amongst the same set of insufficiently
active branches.

For simplicity we consider learning with a single training pattern. Since the synapses were
redistributed randomly, we can think of the nk synapses as balls that are being distributed with
equal probability among mk bins. The number of balls per bin follows a binomial distribution,
which can be approximated by a normal distribution of mean µk and variance σ2

k where

µk =
nk

mk
and σ2

k =
nk

mk

(

1 − 1

mk

)

.

Thus, the distribution of the number of synapses per branch is approximately mkN (µk,σ2
k)(x),

where we use N (µ,σ2) to denote a normal distribution with mean µ and variance σ2.
Using this expression we approximate the total number of branches that will be insufficiently

activated at the end of the next training epoch as

mk+1 = mk

∫ Aζ

−∞

N (µk,σ
2
k)(x)dx =

mk

2

[

1 + erf
(

Aζ − µk

σk

√
2

)]

. (6)

Note that the mean number of synapses per branch, amongst the insufficiently activated branches,
is given by

n̄k =

∫ Aζ

−∞ xN (µk,σ2
k)(x)dx

∫ Aζ

−∞N (µk,σ2
k)(x)dx

=
mk

mk+1

∫ Aζ

−∞

xN (µk,σ
2
k)(x)dx.

Since these are distributed amongst the mk+1 branches, the product n̄kmk+1 yields the total
number of synapses, nk+1, on the unstable branches, as

nk+1 = mk

∫ Aζ

−∞

xN (µk,σ
2
k)(x)dx

=
mkµk

2

[

1 + erf
(

Aζ − µk

σk

√
2

)]

− mkσk

√

1

2π
e
−

(Aζ−µk)2

2σ2
k (7)

= µkmk+1 − mkσk

√

1

2π
e
−

(Aζ−µk)2

2σ2
k

Note that Eqs. (6) and (7) are a dynamical system whose evolution models the change in the mean
and variance of the distribution of activations.

The number of unstable branches and the number of unstable synapses on those branches, can
be used to compute the mean and variance of the new distribution by again invoking the normal
approximation to the binomial distribution. Therefore, the total distribution G after training epoch
k can be calculated as a sum of normal distributions:

Gk =

{

mkN (µk,σ2
k)(x) for x < Aζ

∑k
i=0 miN (µi,σ2

i )(x) for x ≥ Aζ .
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Note that only branches above threshold are stabilized, and so the part of the distribution of
synapses per branch above Aζ includes all synapses stabilized in the past. The portion of the
distribution corresponding to unstable branches only consist of those synapses assigned during the
last round of training. The calculated distributions after different numbers of training epochs are
shown in Fig. 6a).

Fig. 6b) illustrates that the reduced model displays the same relationships for the speed and
magnitude of learning observed earlier. Here we computed the total somatic activation from their
distribution by act =

∫

∞

−∞
x2Gk.

Furthermore, the steady state magnitude of learning rises as the learning threshold rises. Since
all synapses are ultimately stabilized above threshold, the steady state magnitude of learning is
proportional to the number of branches that are initially below threshold (i.e.

∫ ζ
−∞

N (µ,σ2)). This
value evaluates to an error function that is also monotonically increasing.
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Figure 6. a) The distribution of branch activations in the reduced clusteron model. Shown is the normal distribution
at the onset of training as well as the distributions after a number of iterations of the reduced model. b) The
distributions shown in a) can be used to calculate the activation of the model during training. The performance of
the reduced model demonstrates the same relationships for the speed and magnitude of learning dependent on the
choice of learning threshold.

4. Discussion

A hallmark of biologically plausible neural networks is that the rules governing the efficacy of synap-
tic connections depend only on locally available information. Learning rules for adjustment of synap-
tic weights based on the correlations of pre-and postsynaptic activity at a synapse have received
considerable experimental and theoretical treatment (Levy and Desmond, 1985; Bienenstock et al.,
1982). There are also many examples in cortex (Kleim et al., 1996; Hubel et al., 1977; Constantine-
Paton and Cline, 1998; Cline, 2001; Dailey et al., 1994; Greenough et al., 1985; Withers and
Greenough, 1989; Kleim et al., 2004) and cerebellum (Kleim et al., 1998; De Zeeuw and Yeo,
2005; Shigemoto, 2006) where synaptic growth occurs with training, and such reorganization may
even be required for learning (Conner et al., 2003).

Nonetheless, activity-dependent synapse stabilization has received comparatively little theoret-
ical attention (Mel, 1992; Levy and Desmond, 1985; Levy and Colbert, 1991). A good discussion
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of the strengths and weaknesses of the use of cortical rewiring can be found in (Chklovskii et al.,
2004).

The clusteron model of Mel addresses learning that can be accomplished solely by spatial
rearrangement of synapses under the assumption of a nonlinear spatial summation of synaptic
input (Mel, 1992). Mel demonstrated that a single clusteron neuron could learn to respond more
strongly to a set of training patterns than to randomly selected patterns of equal size (i.e., number
of active synapses). In the present study we investigated further the dynamics of learning in the
clusteron and some derivative models. We demonstrated how the choice of the learning threshold
determined the speed and strength of learning, both through numerical simulations and analytically
in a reduced model of the clusteron. Finally, by modifying and extending the basic protocol, we
showed how a clusteron-like rule can be used to learn sequences of patterns or different features of
the training set.

In the clusteron, spatially-clustered synapses must result in a nonlinear increase in overall effi-
cacy. Mel argued that the storage capacity of a system making use of this nonlinearity increases
dramatically (Poirazi and Mel, 2001). Nonlinear information processing in the dendritic tree is well
substantiated and has been shown to be responsible for several behaviorally relevant computations.
Euler et al. have shown the earliest known location for direction selectivity in the mammalian retina
occurs as a result of dendritic morphology of starburst amacrine cells (Euler et al., 2002). Likewise,
the precise structure of the dendritic arbor of the motion-sensitive neurons of the lobula plate of
the blowfly correlates with their preferred direction of motion (Krapp et al., 1998). Furthermore,
the dendritic tree of those neurons acts to filter the many phase-shifted inputs, representing the
same signal, to generate the common output that is sensitive to the overall motion of the visual
field (Single and Borst, 1998). Detection of an object on a collision course with an insect has also
been attributed to nonlinear dendritic computation (Gabbiani et al., 2002). Even in networks where
the input and output are more abstract, such as the hippocampus, or neocortex, nonlinear dendritic
summation appears to be a prominent feature (Losonczy and Magee, 2006; Larkum et al., 1999).

While the clusteron was meant to model a single neuron, it provides a basis for describing a
layer of neurons over which reshuffling of synaptic contacts could occur. It is well documented
that synaptic growth occurs, even in the mature human brain, as it learns a motor skill (Kleim
et al., 2004; Ungerleider et al., 2002). Inducible changes in the number of spines (Desmond and
Levy, 1986; Engert and Bonhoeffer, 1999; Toni et al., 1999), “maturation” of the spines (Matsuzaki
et al., 2004; Hosokawa et al., 1995), and rapid filopodial growth in acute slices in real-time have
been observed (Trachtenberg et al., 2002; Maletic-Savatic et al., 1999). Furthermore, Stepanyants
et al. estimated a so-called “filling-fraction” for various regions of the brain, to estimate the
number of possible synaptic contacts that could be made by a short filipodial outgrowth. Their
conclusion is that a large contribution to network remodeling could be made solely by growth of
new spines (Stepanyants et al., 2002). Thus, while the clusteron seems to make use of fairly drastic
reshuffling, in the context of a full layer of postsynaptic sites, small filopodial movements may be
expected to find adequate sites.

Our simulations predict further properties of systems that learn by structural modifications. We
can expect that the speed of memory acquisition and the strength and stability of the memory, will
be strictly dependent on the difficulty of the learned task. Furthermore, the mechanism by which
those dependencies emerge is clearly shown by the distribution of synaptic activations. Beyond
making predictions about when a neuron can and cannot learn, we show that feature detection and
sequence learning are both explained by the relationship of the synaptic activations to the value
of the learning threshold. We therefore confirm the utility of our finding to explain the behavior of
the model in these two tasks.
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We believe that the present method of analysis and these findings are generalizable beyond
the study of the clusteron and its derivative models. It seems that any model that allows for the
formation of new synapses, either by axonal growth, or by activation of silent synapses, could be
described in a similar way. Any time a new synapse forms, it can either be suitable or unsuitable
for the purposes it has to fulfill. The probability of either event will determine how well and how
fast the system can learn. In our case, the suitability of a synapse was determined by its cluster
membership, and approximately followed a normal distribution. This is only one possible measure
of suitability. An alternative measure of suitability of a new synapse would be simply whether or
not the synapse has formed on the correct cell. The distribution of synaptic suitability would then
be the proportion of synapses that grow to the correct cell, or to the wrong cell, where synapse
stabilization is allowed only for the correct cell. The rate of learning would then be proportional to
the probability of synapse formation on the correct cell.

A simple analogy for this generalized model can be made to classical conditioning paradigms,
where the location of the learning threshold is a measure of the difficulty of the task, which in this
case would be related to the saliency of the conditioned stimulus (CS). Classic work of Pavlov and
others have shown the distinctiveness of the CS to be critical in determining the rate of acquisition
of the CS-US relationship (summarized in (Smith, 1993)).

Perhaps the most accessible example of learning that follows this relationship may be in the
acquisition of a complex sensory or motor skill, such as learning a new language, or learning to
play an instrument. This form of learning is fairly slow and allows time for the structural changes
that our model utilizes (Kleim et al., 2004; Ungerleider et al., 2002). The magnitude of the learned
response at the cellular level is difficult to measure, but we would argue that the stability of a learned
response over time would be proportional to what we define as the magnitude of the response, since
any degree of unguided structural remodeling would take longer to disrupt a larger response. It is
well known that the length of time spent practicing a skill leads to a longer duration of memory
retention (Anderson et al., 1999; Baddeley, 1999). Interestingly, analogous to the gradual increase
of our learning threshold, skill learning also benefits from making incremental increases to the
difficulty of the task (Reigeluth, 1979; van Merriënboer et al., 2002). Young pianists learn simple
songs before Rachmaninoff, as our models benefit from a learning threshold which is initially low
and raised gradually during training.
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