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We study the occurrence of physically observable phase locked states between chaotic oscillators and rotors
in which the frequencies of the coupled systems are irrationally related. For two chaotic oscillators, the
phenomenon occurs as a result of a coupling term which breaks the 2p invariance in the phase equations. In
the case of rotors, a coupling term in the angular velocities results in very long times during which the coupled
systems exhibit alternatively irrational phase synchronization and random phase diffusion. The range of pa-
rameters for which the phenomenon occurs contains an open set, and is thus physically observable.
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In recent years, synchronization of coupled chaotic sys-
tems has been a topic of much interest. Different types of
chaotic synchronization have been studied theoretically[1],
and observed in nature[2], controlled laboratory experiments
[3], and space extended or infinite dimensional systems[4].

Phase synchronization(PS) of chaos refers to the phe-
nomenon in which the phases of two interacting systems
evolve in step with each other, even when the corresponding
amplitudes are only weakly correlated[5]. PS is frequently
considered to be the chaotic counterpart of phase locking
between periodic systems.

m:n phase locking of periodic oscillators(PL) has been
studied since the 17th century[6]. It can be thought of as the
appearance of a stable limit cycle on the invariant torus de-
fined by the cross product of the phasesw1,w2 of the two
coupled oscillators. If the two systems are phase locked, any
2p advance in w1 is accompanied by a corresponding
sm/nd2p advance inw2 (m,n being integer numbers). An
equivalent statement can be formulated in terms ofc1 and
c2, the lifts of the two phases to the real line. If these lifts
satisfy uc2−sm/ndc1u,C, with C a positive constant, the
two systems are said to be phase locked.

Similarly m:n frequency locking(FL) occurs when the
systems adjust their mean frequenciesv1 andv2 so that they
satisfy v2=sm/ndv1. For a wide class of coupled nonlinear
oscillators this condition is satisfied in a finite region of pa-
rameter space called the resonance tongue[9]. It is well
known that for nonlinear periodic oscillators resonance
tongues corresponding to irrational frequency ratios(v1
=rv2, with r irrational) are of zero measure.

In periodic systems PL is not a threshold phenomenon, in
the sense that even two uncoupled periodic oscillators can
exhibit PL if their frequencies happen to be rational multiples
of each other. The situation is different in the case of chaotic
or noisy periodic systems. Due to the phase diffusion, two
uncoupled systems may exhibit only FL, but not PL. In this
case PL is a genuine threshold phenomenon. We use this
distinction to argue that irrational phase synchronization is a

nontrivial state in coupled chaotic systems. In particular, we
demonstrate that for chaotic systems it is meaningful to con-
sider states whereDrc= uc1−rc2u (with r an irrational num-
ber) oscillates around a constant valueC with amplitude
smaller thanp.

To motivate this discussion, consider a pair of round
plates coupled by a belt running along their perimeter. As-
sume that the belt does not slip around the first plate, but
may slip as it moves around the second, and that the first
plate is rotating uniformly. If the radii of the two plates are
irrationally related we can assume that the force on the sec-
ond plate is proportional to the difference in its angular ve-
locity and the velocity of the belt, so thatc̈2=−esċ2−rċ1d,
where r is an irrational number. We ignore inertia in this
simplified approach. Integrating this equation we obtainċ2

=−esc2−rc1d+eH+ċ2s0d, where H=c2s0d−rc1s0d. It is
easy to see that the lifts of the phases approach the relation
c2=rc1+H−DrC /e, whereDrC=ċ2s0d−rċ1s0d. Thus a 2p
advance inc1 corresponds to ar2p advance inc2. A similar
computation shows that ifc̈2=−esċ2−rċ1d+hstd, with
hstd,G is some bounded, integrable function, the same con-
clusion follows, up to an error bounded byG /«. Thus irra-
tional phase synchronization is possible in this system even
if the system is noisy. Note that the appearance of a term
esc2−rc1d in a two-dimensional(2D) dynamical system
means that there exists a force that depends on the relative
velocities, commonly associated with dissipative viscous
forces found in mechanical systems. In addition, to the pre-
vious mechanical example, such a viscous term can also be
found in two pendula attached end to end[7], or in two
pistons attached to moving cylinders. Such type of dissipa-
tive viscous forcing term can also be used to control oscilla-
tions in a shipboard crane, as it was done in Ref.[8].

There are a few important features that distinguish this
case from examples of coupled oscillators typically found in
the literature. In the present case, there is no preferred phase
difference between the two rotating plates, the asymptotic
state being determined by the initial conditions. Moreover,
the phase locked state does not appear in a saddle node bi-
furcation, and hence the phase slips typical of noisy phase
locked oscillators[1,5] will not have the same origin in this
case.
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Following this example, we say that two systems exhibitr
phase synchronization(r-PS) if phase variables can be de-
fined such that their lifts to the linec1 and c2 satisfy uc1
−rc2−Cu= uDrc−Cu,K,p. In the present example the con-
dition K,p is essential, since otherwise the phase of one
system would not tell us anything about the relation of the
phases in the original systems, and the two systems could not
be called synchronous[10].

A more concrete example is provided by a pair of coupled
chaotic Rössler oscillators[11]

ẋ1,2= − v1,2y1,2− z1,2,

ẏ1,2= v1,2x1,2+ ay1,2,

ż1,2= f + z1,2sx1,2− cd, s1d

wherea=0.15,f =0.2,c=10. The systems are in the chaotic,
phase coherent regime, with approximate angular frequen-
ciesv1 andv2. Rewriting the equations in cylindrical coor-
dinates sx1,2;%1,2cosc1,2,y1,2;%1,2sinc1,2d, and adding a
term coupling the phases of the two systems we obtain

%̇1,2= − z1,2cossc1,2d + a%1,2sin2sc1,2d,

ċ1,2= v1,2+ acossc1,2dsinsc1,2d +
z1,2

%1,2
sinsc1,2d

+ «1,2F1,2sc1,c2d,

ż1,2= f + z1,2f%1,2cossc1,2d − cg, s2d

where%1 s%2d and c1 sc2d are the amplitude and phase of
the first(second) oscillator,«1,2 are two real parameters con-
trolling the strength of the coupling, andF1,2sc1,c2d :R2

→R are coupling functions specified below. Couplings af-
fecting only the phases of oscillators are used in models of
physical systems such as Josephson junctions[12] and phase
locked loops[13].

A difficulty in showing irrational phase synchronization in
system(2) is due to the fact that in numerical simulations all
quantities are represented by rational numbers. We consider
v1=1, v2=1.3, «1=«2=«, and F1sc1,c2d=−F2sc1,c2d
=«s2rnc2−c1d, wherern;an/an+1, andan is thenth element
of the Fibonacci series. As a resulthrnj is a series of rational
numbers converging to the golden meanslimn→`rn=s
,0.6180d.

Figure 1 summarizes the main results of the simulations
of system (2). At «=0.004 the phase differencesD2rn
;c1std−2rnc2std exhibit small oscillations around a constant
value for eachn [Fig. 1(a)]. Furthermore, fornù5 the phase
differencesD2rn

oscillate around a value that is essentially
independent ofn. This has been checked up ton=20, corre-
sponding to the maximum precision allowed by our com-
puter. Figure 1(b) shows the third and fourth Lyapunov ex-
ponents in the spectrum versus coupling strength« at n=20.
2r-PS occurs when the Lyapunov exponent which is initially
zero becomes negative. This occurs before the smallest posi-
tive Lyapunov exponent becomes negative[for comparison

see Fig. 1(d)] and is in agreement with observations in the
case ofn:m phase synchronization[14]. In Figs. 1(c) and
1(d) we graph the third and fourth(the first and second)
Lyapunov exponents in the spectrum versus the indexn at
«=0.04 [marked with an arrow in Fig. 1(b)], showing that
their values become independent ofn, asn increases. This is
consistent with 2r-PS characterized by the conditionuc1std
−2rc2std−Cu,p (with r =s), and the presence of two posi-
tive, one zero, and one negative Lyapunov exponents in the
spectrum.

Note that at«=0 the right-hand side of system(2) is
invariant under 2p phase translations. The coupling term
breaks this invariance. Hence the present system differs from
the ones studied in Ref.[14], since it cannot be transformed
directly back into rectangular coordinates. Given system(2)
with F1sc1,c2d=−F2sc1,c2d=«s2rc2−c1d, let c1−2rc2

=D2rc so that

D2rc8 = s« + 2r«dsD2rcd + v1 − 2rv2

+ gscossc1,2d,sinsc1,2d,z1,2,%1,2d, s3d

where g is easily determined from the original equations.
The numerics show thatz and% remain bounded, which may
also be proved using a Lyapunov function argument. There-
fore, there exists a constantL such thatugu,L for all time. It
follows that

ues«+2r«dtD2rcstd − D2rcs0du ø E
0

t

es«+2r«dsuD2rv + Luds

ø
uD2rv + Luses«+2r«dt − 1d

− s« + 2r«d
,

whereD2rv=v1−2rv2. Therefore

uD2rcu ø
uL + D2rvus1 − e−s«+2r«dtd

« + 2r«
+ e−s«+2r«dtD2rcs0d.

FIG. 1. Numerical integration of system(2). (a) Time evolution
of D2rn

;c1std−2rnc2std for different values ofn at «=0.004
[marked with an arrow in b)]. (b) Third and fourth Lyapunov expo-
nents in the spectrum vs the coupling strength« at n=20. (c) Third
and fourth Lyapunov exponents in the spectrum vs the indexn at
«=0.04. (d) First and second Lyapunov exponents in the spectrum
vs the indexn at «=0.04. Units are dimensionless.
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We can conclude thatD2rc will always be bounded, no
matter what« is. However, a small« implies the possibility
of large excursions and a slow decay ofD2rc. Therefore
2r-PS will occur only for sufficiently strong coupling. Note
also that if we definedD2r̃c=c1−2r̃c2 for r̃ Þ r, then Eq.(3)
will contain an additional term which will grow approxi-
mately linearly. It is easy to see that such a term will lead to
slow linear growth inD2r̃c so that the two systems exhibit
2r-PS for a unique value ofr, in a set containing an open
subset of parameter space.

Since the coupling in system(2) breaks the 2p periodicity
of the right-hand side of the equations, it is not clear how to
interpret such a coupling physically. We next consider a
more realistic system composed of a pair of chaotic rotors,
described by

c̈1,2+ g1,2ċ1,2+ f1,2sc1,2d = F1,2std ± «srċ2,1− ċ1,2d, s4d

where f1,2scd=exph10fcosscd−1gjsins8cd, F1,2std=a1,2

+b1,2sinsv1,2td. Equation(4) can model resistively coupled
Josephson junctions, subject to external currents of dc(ac)
componentsa1,2 sb1,2d [15]. The state variablec represents

the angle(phase variable) while ċ represents the rotation
velocity (angular frequency). In the following we setg1
=g2=0.1, b1=1.03,b2=1, a1=a2=0.01, andv1=0.5.

In Ref. [16] it was argued that system(4) exhibits 1:1 PS
in a special set of parameters, so thatuc2−c1u remains
bounded for all time. We are interested inr-PS, withr irra-
tional, i.e., a state in whichuDrc−Cu,p, with Drc=c1
−rc2. Following the ideas given above, we show that ar-PS
state persists within an interval ofr values given byfa,bg

with a rational andb irrational, andua−bu!1, i.e., we dem-
onstrate irrational PS by showing the robustness ofr-PS
within a parameter interval whose open boundary is an irra-
tional (up to the numerical resolution of our computer).

We first setv2=0.5,«=20, and varyr within the interval
f1,p /3g, with p /3 approximated to 15 digits. Figure 2
shows that, as we changer from a rational numbersr1=1d
toward an irrational one by selecting a sequence of values
r2, r3, ¯ , rn, rn+1,p /3, the rational PS disappears.
The inset represents a magnification of the evolution ofDrc
for caser =r1. For v2=0.499 999 390 009 6 the behavior of
Drc is very different, as illustrated in Fig. 2(b). In this case
for all r within the interval f1,p /3g, the phase difference
Drcstd behaves intermittently, alternating between epochs of
approximately constant behavior, thelaminar phaseor pla-
teau, and epochs of diffusive behavior. During the intervals
of diffusive behavior, the phase difference evolves appar-
ently randomly to another closeby plateau. Settingr <p /3,
Fig. 3(a) shows that this intermittent phenomenon persists
over a very long time interval, with plateaus of approxi-
mately the same length. Finally a quasiperiodic state is
reached in which the phases exhibit nonchaoticr-PS. It must
be highlighted that only this latter state rigorously satisfies
our condition forr-PS. Nevertheless, also during the chaotic
transient the laminar phases persist over intervals much
larger than the characteristic time scale of the system(the
phase difference temporarily satisfy the condition for phase
locking in intervals of time of the order of a million rota-
tions). As a consequence, such a transient behavior can be
observed experimentally as a transient phase synchronization
regime[17].

FIG. 2. Temporal behavior ofDrn
c for v2=0.5 (a) and v2

=0.499 999 390 009 6(b) for r1=1, r2=1.047, r3=1.047 197 55,
and r4=1.047 197 551 196 59. In(a) PS is lost asr is approaching
p /3. In (b), PS is robust within an interval ofr values whose
boundary is very close top /3. The coupling is«=20. Units are
dimensionless.

FIG. 3. Temporal evolution ofDrc for Dv=2.099 904310−7

(a) and forDv=10−3 (b). The two boxes in(a) show stroboscopic

mappings of the attractorċ13c̈1 for time intervals where diffusive
(left box) and regular(right box) behavior inDc is observed.«
=20. Notice the very large time scales,33108d over which the
transient dynamics takes place. Units are dimensionless.
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Next we analyze the dependence of the laminar phases on
the forcing frequency mismatchDv= uv2−v1u when r
<p /3. Our aim is to show that there exists an interval of
valuesDv for which the system exhibits the type of switch-
ing between laminar and diffusive behavior illustrated in Fig.
3(a). For «=20, this scenario is observed for all choices of
Dv within the interval f10−7,10−5g. Indeed, increasing the
frequency mismatch toDv=10−3 results in unbounded evo-
lution of the phase difference[see Fig. 3(b)]. Increasing«
results in increasing the size of theDv interval over which
r-PS can be found. We have verified that the very same sce-
nario persists for a large set of parameters given byDv
=f10−8,10−6g, e=f10,30g, b2=0.9, andb1=f0.87,0.89g.

In Fig. 3(a), the top small insets show stroboscopic recon-

structions of theċ13c̈1 attractor, for diffusive phase differ-
ence(left) and for a plateau(right). Both attractors are typi-
cal of chaotic motion, and are neither quasiperiodic nor
periodic.

Successive plateaus are characterized byuDrc−Cu,p
with different, uncorrelated values of C. This means that the
transient behavior is not characterized by a preferred phase
difference in the system, equivalent to the system of coupled
rotating plates given in the introduction.

Next, we analyze the dependence of the plateau length on
Dv. In Fig. 4 we show that the phase differenceDrc mod 2
p, at Dv=5310−7, exhibits plateaus precisely when
usinsv1td−sinsv2tdu is above a certain threshold(in this case
the threshold is 1). Performing an analysis similar to the one
leading to Eq.(4), we can conclude thatDrc can be expected
to exhibit diffusive behavior, exactly whenusinsv1td
−sinsv2tdu exceeds a critical value, in agreement with nu-
merical observations. From this analysis it follows that the
length of the laminar phase is inversely proportional to the
frequency differenceuv1−v2u. In fact, we have found nu-

merically that the average laminar period,kTlaml, scales as
kTlaml>BDv−1, with B=0.203±0.006. We emphasize that
phase synchronization during the laminar chaotic states oc-
curs only as a transient phenomenon, on time scales much
larger than the time scale of the oscillations[17,18], and the
r-PS condition is therefore only satisfied intermittently. The
r-PS condition is satisfied fully only during the final noncha-
otic state, indicating that fullr-PS emerges when the system
settles onto its quasiperiodic attractor.

The r-PS phenomenon observed in Eqs.(4) has some in-
teresting features. The transient chaoticr-PS state leads to a
final quasiperiodic state. Although the transient state can be
very long, it invariably terminates in ar-PS quasiperiodic
state. Phenomenologically, this suggests that the transient,
chaotic r-PS state corresponds to a chaotic saddle in the
phase space of the system. This leads us to analyze the pa-
rameter space to detect such transientr-PS states. Since the
transients can be very long, we assume that whenever a pla-
teau is observed a final quasiperiodic state is reached, occa-
sionally checking that this is indeed the case[19].

The result are shown in Fig. 5, a parameter space for
Dv=f10−4,5.6310−3g and«=f10,28g, with the resolution of
10 points in the vertical axis and 200 points in the horizontal
axis. For small values ofDv, ther-PS regions are dense, and
therefore, were not shown in this figure. We note that there
are many open areas wherer-PS is observed. As« is in-
creased the region in whichr-PS exists becomes more dense,
showing that the coupling is responsible for ther-PS phe-
nomena.

In conclusion, we have presented examples of coupled
chaotic systems which exhibit irrational phase synchroniza-
tion. This type of synchrony is characterized by the

FIG. 4. The phase differenceDrC mod 2p, for Dv
=0.000 000 5, and the broken gray thick line below represents when
the maximum of the functionusinsv1td−sinsv2tdu is higher than 1.
Units are dimensionless.

FIG. 5. Parameter spaceDv vs «. Points represents parameters
for which a plateau of lengtht=100 000 is found. In this picture we
set g1=g2=0.1, b1=1.03, b2=1, a1=a2=0.01, andv1=0.5. Note
that the horizontal axis representsDv which is equal touv1−v2u.
Units are dimensionless.
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emergence of a phase locked state with irrational frequency
ratio. In particular, we have shown that, unlike in the case of
periodic systems, irrational phase synchronization is physi-
cally meaningful concept for coupled chaotic systems. Simi-
lar results can be expected for noisy periodic systems. For
chaotic oscillators, such a phenomenon is induced by a cou-
pling term involving the difference in the lifts of the phases
which breaks the 2p invariance in the phase equations. A
more realistic example is given by coupled chaotic rotors,
where a coupling term in the angular velocities can result in
alternating epochs of temporary irrational phase synchroni-

zation (chaotic r-PS) with phase diffusion, eventually lead-
ing to the setting of a quasiperiodic state where irrational
phase synchronization holds. The range of parameters for
which this phenomenon occurs contains an open set, and is
thus physically observable.
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