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1. Introduction

Networks of coupled oscillators are used to describe a variety of systems in science

and engineering, such as Josephson junction arrays, generators in power plants, firefly

populations, and heart pacemaker cells. Of particular interest are solutions in which the

network, or subpopulations within the network, oscillate synchronously. The analysis

of the stability of and transition to a synchronous state can be very complex and has

received much attention [1, 2, 3].

Recent applications to nanoelectromechanical systems (NEMS) [4], and beam

steering devices in telecommunications [5], showed that important advances can be made

by studying these problems perturbatively. It is therefore essential to have appropriate

mathematical tools for such an analysis. We propose a perturbative method, based on

normal form techniques [6, 7, 8], which is in many respects superior to those commonly

used to study synchrony in oscillator networks.

The method is intuitive and helps us distinguish between contributions to the

dynamics arising from the network configuration and the internal structure of individual

oscillators. Because of this it is possible to carry out calculations without having

to specify the nonlinearities explicitly. Also, the approach based on normal forms is

rigorous, and the validity of approximations is known a priori. On the other hand, for

methods commonly used in the physics literature, mathematical justification is often

non-trivial, and must be performed a posteriori [8, 9].

There are a number of other advantages that the normal form approach brings to the

table. The approximating equations to the original system are obtained by examining a

collection of algebraic conditions. This procedure can be formulated in an algorithmic

form and automated, which is of particular importance when approximations of higher

order in the small parameter are needed. Computer codes for determining normal forms

to any order already exist for some problems in celestial mechanics.

Standard methods, such as averaging, usually require center manifold reduction to

be performed first [10]. We will show that the center manifold reduction is obtained

naturally in the normal form of the equations of motion. Moreover, the change of

coordinates leading to the normal form can be used to approximate the center manifold,

the invariant fibration over the center manifolds, and a number of nearly conserved

quantities of the equations to any order. As a result, the normal form method offers a

deeper insight into the geometric structure of the approximating equations.

Related approaches can be found in the literature [11, 12]. In particular, the method

of normal forms has been used in [13] to obtain reduced equations for oscillators close

to a bifurcation. Our approach differs in that we do not consider only small amplitude

oscillations, but general weakly nonlinear oscillators. Moreover, the coupling in the

present case results in negative eigenvalues in the linear part of the vector field.

In this paper we look at systems of globally coupled identical oscillators illustrated

in Figure 1. This configuration is commonly used for wave generators in order to increase

the output power (See e.g. [14]). When oscillators are synchronized the power of emitted
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Figure 1. Globally coupled oscillators. Load parameters are rescaled with respect to
the number of oscillators, so the values of load resistance, capacitance and inductance
are NR, C/N and NL, respectively.

waves scales as a square of the number of coupled units. Therefore, it is important to

determine couplings that lead to synchronous behavior. Our analysis results in a general

expression for the onset of synchronization in the network, and we recover recent results

for an array of van der Pol oscillators [15] as a special case. Furthermore, we find,

somewhat surprisingly, that the coupling can induce synchronous oscillations even in

a network of weakly nonlinear systems which are unstable, and do not oscillate when

uncoupled. The method itself can be easily extended to treat more complex networks

and other types of coherent solutions. In order to keep our presentation streamlined we

do not discuss these problems here.

This work is motivated by previous studies of synchrony in Josephson junction

arrays [16, 17, 18, 19], where a series of junctions was shunted with an RLC load

(Fig. 1). Dhamala and Wiesenfeld introduced a heuristic, perturbative method in

which an approximate stroboscopic map was constructed [19]. For an appropriately

chosen strobing period T the synchronous solution corresponds to a fixed point of this

stroboscopic map, and the stability of the synchronous state can be determined from the

eigenvalues of its linearization. A remarkable consequence of this approach is a unified

synchronization law for capacitive and noncapacitive junctions, two cases which were

believed to have different dynamics. An extension of the method, and an application to

the study of synchrony in an array of van der Pol oscillators was given in [15].

The stroboscopic map approach, like most classical singular perturbation methods,

consists of identifying and taming secular terms in the naive approximating solution of

the weakly nonlinear system. The general structure of the reduced equation obtained

using this approach is difficult to know before the calculations are carried out. On the

other hand, the normal form method enables us to carry out calculations without having

to specify the nonlinearity explicitly, or calculate the approximate strobing time T , and

hence study a much broader class of problems.

The paper is organized as follows: In Section 2 we briefly review the theory of
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normal forms and illustrate it in the case of a van der Pol oscillator. These ideas are

applied in Section 3 to compute the normal form of the equation describing a network of

weakly nonlinear oscillators. The stability of the synchronous solution in this network

is analyzed in Section 4. Several examples illustrating these ideas are given in Section

5. Finally, in Section 6 we discuss possible extensions of our work to different networks.

2. Normal Form Analysis

In this section we give outline the application of the method of normal forms to the

analysis weakly nonlinear systems in a general setting. The method has been discussed

in [7, 6], and a mathematical analysis is given in [20, 8]. Consider a weakly nonlinear

ODE of the form

x′ = Ax + ε
∑

α,i

cα,ix
αei = Ax + εf(x), (1)

where x ∈ Rn, A is an n × n constant matrix, and ei is the i-th unit vector. We use

standard multi-index notation, so that α ∈ Nn and xα = xα1
1 · · ·xαnn . We emphasize

that, in contrast with local normal form theory, f(x) may contain any monomial in x,

including linear terms.

A goal of normal form theory is to remove terms of O(ε) in equation (1) by a

near-identity change of variables

x = y + εg(y), g : Rn → Rn, (2)

where g(y) is a polynomial. In terms of the new variables (1) becomes

y′ = Ay + ε

(

∑

α,i

cα,iy
αei − [A,g](y)

)

+O(ε2) (3)

where the Lie bracket [A,g](y) equals Dg(y)Ay − Ag(y). To remove the nonlinear

terms at O(ε) in (3), we need to solve the equation

[A,g](y) =
∑

α,i

cα,iy
αei. (4)

Since this equation is linear in g, it is equivalent to the finite family of equations

[A, gα,i](y) = cα,iy
αei. (5)

If A is diagonal, the eigenvectors of [A, ·] are the homogeneous polynomials, since

[A,yαei] = Λα,iy
αei,

where

Λα,i =
∑

k

αkλk − λi = 〈α,λ〉 − λi, (6)

and λi are eigenvalues of matrix A. It follows that, if Λα,i 6= 0, equation (5) has the

solution

gα,i(y) =
cα,i
Λα,i

yαei.
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On the other hand, if Λα,i = 0, equation (5) does not have a solution, and we say that

the monomial yαei is resonant. Therefore, only nonlinear monomials yαei such that

Λα,i 6= 0 can be removed at first order in ε by a near identity coordinate change of the

form (2).

In particular, we can split the nonlinearity f(y) in (1) into a resonant part

fR(y) =
∑

Λα,i=0 cα,iy
αei and a nonresonant part fNR(y) =

∑

Λα,i 6=0 cα,iy
αei, so that

f(y) = fR(y) + fNR(y). By setting g(y) =
∑

Λα,i 6=0 gα,i(y), the change of coordinates (2)

leads to the equation

y′ = Ay + εfR(y) +O(ε2). (7)

We emphasize that to obtain the normal form of equation (1) to O(ε), we simply

identify and remove all resonant terms, that is all monomials comprising fNR(x). The

preceding argument shows that this can be done at the expense of introducing terms

of O(ε2) into the equation. If the O(ε2) terms are neglected in (7), a truncated normal

form is obtained. To continue this process and obtain normal forms to higher order in

ε, it is necessary to compute the O(ε2) terms that are introduced at this step explicitly.

This is equivalent to the observation that the computation of a local normal form near

a singular point to second order may affect the cubic terms, and the computation needs

to be carried out order by order (see [9], for instance).

The following theorem shows that the truncated normal form provides a good

approximation to the original equations

Theorem 1 [8] Consider the ordinary differential equation

x′ = Ax + ε
∑

α,i

fα,i(t)x
αei, x(0) = x0

where A is a diagonal, and has eigenvalues with non-positive real part. Construct the

truncated normal form

y′ = Ay + εfR(y),

and let x(0) = y(0). Then there is a T = T (x(0)) > 0 such that the solutions of the two

equations satisfy |x(t)− y(t)| = O(ε) for all t ∈ [0, T/ε] and ε sufficiently small.

Remark 1 When the truncated equations contain hyperbolic invariant structures,

the conclusions of Theorem 1 often hold for all time along their stable directions

[21]. Normal form theory can be extended to study nondiagonalizable matrices [9],

nonhomogeneous equations with nonlinearities that are not finite sums of monomials,

and higher order approximations in ε [8, 22]. The main ideas presented here are similar

in these cases. We present the simplest case in order to keep technicalities at a minimum.

Note that, by construction [A, fR] = 0. It follows that the truncated normal

form is equivariant under the flow of the unperturbed equation x′ = Ax. Moreover,

the resonant monomials and hence the structure of the truncated normal form, are

completely determined by the eigenvalues of A. This allows us to prove the following

Proposition which will be useful in the following sections.
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Proposition 1 Suppose that matrix A in (1) is diagonalizable, has m purely imaginary

eigenvalues λi, and that other eigenvalues νi have negative real part. The system (1)

then can be written as

x′1 = A1x1 + εh1(x1,x2)

x′2 = A2x2 + εh2(x1,x2)

where A1 = diag(λ1, . . . , λm), A2 = (νm+1, . . . νn). If the nonlinear terms h1 and h2 are

polynomials, the truncated normal form of this system has the general form

y′1 = A1y1 + εhR
1 (y1) (8)

y′2 = A2y2 + εhR
2 (y1,y2) (9)

where hR
2 (y1, 0) = 0.

Proof: A term xα1 xβ2 ei with i ≤ m is resonant if Λα,i =
∑m

j=1 αjλj+
∑n

j=m+1 βjνj−
λi = 0. Since the eigenvalues νi have negative real part and enter the sum with the

same sign, this condition can be satisfied only if all βj = 0.

Similarly, a term xα1 ei for i > m is resonant only if Λα,i =
∑M

j=1 αjλj−νi = 0. This

equation cannot hold. Hence all resonant monomials in (9) contain a nonzero power of

y2,j for some j, and evaluate to 0 when y2 = 0. �
Although Proposition 1 is simple to prove, it says much about the structure of the

truncated normal form. The fact that hR
2 (y1, 0) = 0 means that the hyperplane y2 = 0

is invariant under the flow of (8-9). In fact, the hyperplane y2 = 0 is the center manifold

of this system, and hence (8) trivially provides the reduction of the truncated normal

form equation to the center manifold. Therefore, it is unnecessary to compute the center

manifold explicitly to obtain the reduced equations.

Furthermore, since y2 does not occur on the right hand side of (8), the fibration

given by y1 = const. is also invariant under the flow. To obtain an O(ε) approximation

of the center manifold, and the invariant fibration over the center manifold in the

original coordinates, it is sufficient to invert the near identity transformation (2) used in

obtaining the normal form equation. In fact, there are typically other easily identifiable

quantities that are conserved by the flow of the truncated normal form, and provide

adiabatic invariants for the original equations [9, Chapter 5].

2.1. Example: Van der Pol Oscillator

As a simple, illustrative example, and to introduce results that will be used in section

5, we consider the van der Pol equation

x′′ − εx′(1− x2) + x = 0. (10)

We can rewrite system (10) in the variables

z = x+ ix′, z̄ = x− ix′ (11)
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to obtain:

z′ = − iz +
ε

8
(4z − 4z̄ − z3 − z2z̄ + zz̄2 + z̄3), (12)

z̄′ = iz̄ − ε

8
(4z − 4z̄ − z3 − z2z̄ + zz̄2 + z̄3). (13)

This system is in the form that can be analyzed using the ideas discussed in Section 2.

The eigenvalues of the linear part are λ1 = −i and λ2 = i. The resonant terms can be

computed using the condition Λα,i = 0 where Λα,i is defined in equation (6).

Table 1. Resonance condition.

term z z̄ z3 z2 z̄ zz̄2 z̄3

α (1,0) (0,1) (3,0) (2,1) (1,2) (0,3)
Λα,1 0 2i −2i 0 2i 4i
Λα,2 −2i 0 −4i −2i 0 2i

As noted in the discussion following the derivation of equation (7), the truncated

normal can be obtained simply by removing the resonant monomials in (12-13). From

Table 1 we find that the resonant terms in (12) are z and z2z̄, and the resonant terms

in (13) are their complex conjugates z̄ and zz̄2, as expected. Therefore, there exists a

near identity change of coordinate in which (12-13) have the form

z′ = − iz +
ε

2
z − ε

8
z2z̄ +O(ε2), (14)

and it’s complex conjugate.

As noted in Section 2, equation (14) is equivariant under the flow of the unperturbed

equation, which is a pure rotation of the real plane. It follows that the right hand side of

any weak perturbation of the equation z′ = −iz, z̄′ = iz cannot depend on the angular

variable when expressed in polar coordinates. Indeed, (14) takes the form

R′ =
ε

2
R

(

1− 1

4
R2

)

, θ′ = 1.

in polar coordinates. The same procedure can be used to obtain higher order normal

forms, see [8].

Remark 2 Strictly speaking, new coordinates are introduced in obtaining equation (14).

To keep notation at a minimum, we name these new variables z and z̄ as well. A similar

convention is used in the rest of the paper.

3. Globally coupled networks

In this section we use the normal form method to study a network of identical, weakly

nonlinear oscillators, described by the equation x′′i +xi+ εh(xi, x
′
i) = 0 when uncoupled.

Here ε is a small parameter, and the nonlinear term h(xi, x
′
i) is assumed to be a

polynomial. The elements in the network are globally coupled by a linear load (Fig.
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1). The coupling is weak and of the same order as the nonlinearity. While this is not

the most general example of a globally coupled network, these assumptions have been

chosen to simplify the presentation, and can be relaxed. Equations of motion for this

system can be written as

x′′k + εh(xk, x
′
k) + xk = q′ (15)

µ1q
′′ + µ2q

′ + q = ε
κ

N

N
∑

j=1

xj (16)

Here we follow the notation introduced in [18, 16, 19, 15], where µ1 and µ2 are control

parameters, and can be understood as the inductance and the resistance of the coupling

load, respectively. The goal of our calculation is to find load parameters that will ensure

synchrony in the network.

In order to bring the equations of motion to normal form, we first have to diagonalize

their linear parts. To make the procedure more intuitive we introduce complex variables

zk = xk + ix′k and z̄k = xk − ix′k, and denote q′ = p. The system (15-16) then becomes

z′k = −izk + ip− iεf(zk, z̄k) (17)

z̄′k = iz̄k − ip+ iεf(zk, z̄k) (18)

where f(z, z̄) = h[(z + z̄)/2, (z − z̄)/2], and

q′ = p (19)

p′ = −µ2

µ1

p− 1

µ1

q + ε
κ

2µ1N

N
∑

j=1

(zk + z̄k). (20)

This system can be written in matrix form as

z′ = Az + iεf(z) (21)

where z = (z1, z̄1, z2 . . . , z̄N , q, p),

A =





























−i 0 0 0 0 0 i

0 i 0 0 0 0 −i
0 0 −i 0 0 0 i

0 0 0 i 0 0 −i
. . .

...

0 0 0 0 i 0 −i
0 0 0 0 0 0 1

0 0 0 0 0 − 1
µ1
−µ2

µ1





























(22)

and

f(z) =

(

−f(z1, z̄1), f(z1, z̄1),−f(z2, z̄2), . . . , f(zN , z̄N), 0,− iκ

2µ1N

∑

j

(zj + z̄j)

)T

. (23)

Here T denotes the transpose, and f(z) is a column vector.
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Finally, we diagonalize the matrix A, by introducing another coordinate change

w = B−1z, where B−1AB = DA is diagonal. In the new coordinates the equations of

motion have the form

w′ = B−1Az + iεB−1f(z) = DAw + iεB−1f(Bw), (24)

The matrix B can be computed using elementary linear algebra. Its actual form is not

of interest, and we therefore suppress it. In component form (24) becomes

w′k = − iwk − iεf(wk + b1u+ b2v, w̄k + b̄1u+ b̄2v) (25)

+ ε
κ

2ZN
eiδ
∑

j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)]

w̄′k = iw̄k + iεf(wk + b1u+ b2v + w̄k + b̄1u+ b̄2v) (26)

+ ε
κ

2ZN
e−iδ

∑

j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)]

u′ = ν2N+1 u (27)

− i(1− C)
κ

4µ1N

∑

j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)]

v′ = ν2N+2 v (28)

− i(1 + C)
κ

4µ1N

∑

j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)]

where b1,2 = 2µ1/(2µ1 + iµ2 ∓ i
√

µ2
2 − 4µ1), C = µ2/

√

µ2
2 − 4µ1, Z =

√

(1− µ1)2 + µ2
2

is the impedance, and δ = arcsin(µ2/Z) is the phase shift on the load. Variables u and

v are obtained from q and p. Note that matrix A has 2N purely imaginary eigenvalues

λk = −i, λk+1 = i, k = 1, 3, . . . , 2N − 1, corresponding to the first 2N entries on the

diagonal of B−1AB. The last two eigenvalues

ν2N+1,2 =
−µ2 ±

√

µ2
2 − 4µ1

2µ1

(29)

have negative real part.

Since the linear part of (25–28) is diagonal, it is now straightforward to identify

nonresonant terms, as discussed in Section 2. First, from Proposition 1, we find that all

terms containing powers of u or v can be removed at O(ε) in the equations for wk and

w̄k using a near identity change of coordinates, so (25-26) reduce to the equations on

the center manifold

w′k = −iwk − iεf(wk, w̄k) + ε
κ

2ZN
eiδ
∑

j

(wj + w̄j) +O(ε2), (30)

w̄′k = iw̄k + iεf(wk, w̄k) + ε
κ

2ZN
e−iδ

∑

j

(wj + w̄j) +O(ε2). (31)

While the load variables do not enter the final approximating equations, the form of

the load equation was important in obtaining the diagonalization, and will therefore be

reflected in the final approximation.

We can use the normal form to compute the transients, as well as the asymptotic

state of a solution. However, since we are interested in the stability of the synchronous
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state, we only consider the reduced equations on the center manifold u = 0, v = 0, and

therefore drop equations (27-28) from further consideration.

The normal form of (25-26) is obtained by computing the remaining resonant

terms. The ones due to the nonlinearity f , are determined as follows: Let fR
w be the

resonant part of f in the equation for the individual oscillators, w′ = −iw − iεf(w, w̄),

and fR
w̄ the resonant part in w̄′ = iw̄ + iεf̄(w, w̄). A simple computation shows that

fR
w = wkφ

R(wkw̄k) and fR
w̄k

= w̄kφ̄
R(wkw̄k), where φR is a polynomial in ww̄. Generally,

the coefficients of φR are complex.

It remains to determine the resonant terms that are due to the coupling term

κeiδ/(2ZN)
∑

j(wj + w̄j). Obviously, monomials wj are resonant in (30), while

monomials w̄j are resonant in equations (31). Keeping only the resonant terms in the

(30–31), we obtain the normal form to O(ε):

w′k = −iwk + ε

(

wkφ
R(wkw̄k) +

κ

2ZN
eiδ
∑

j

wj

)

+O(ε2) (32)

w̄′k = iw̄k + ε

(

w̄kφ̄
R(wkw̄k) +

κ

2ZN
e−iδ

∑

j

w̄j

)

+O(ε2). (33)

Since the normal form equations are equivariant under the flow of the unperturbed

system, it is again natural to rewrite them in polar coordinates, wk = rke
−iθk . We obtain

r′k = εrkR(rk) + ε
κ

2ZN

∑

j

rj cos(θk − θj + δ) +O(ε2) (34)

θ′k = 1− εΘ(rk)− ε
κ

2ZN

∑

j

rj
rk

sin(θk − θj + δ) +O(ε2), (35)

where R = (φR + φ̄R)/2 is the real, and Θ = (φR− φ̄R)/2i the imaginary part of φR. Note

that the fact that the right hand side of (34) depends only on the phase differences is a

consequence of the equivariance of the truncated normal form under the transformation

θ → θ + C, where θ = (θ1, θ2, . . . , θN) and C = (c, c, . . . , c).

Remark 3 We could also use a center manifold reduction to remove the variables u and

v from equations (25-26) [10]. This would add another step to the calculation. If the

transient dynamics of initial states off the center manifold is of interest, in addition it

is necessary to compute the stable fibration over the center manifold. The normal form

method considerably simplifies these computations. As noted in Section 2, the truncated

normal form is a skew product, and provides both the reduction of the equations to the

center manifold, and an approximation for the flow in the transversal direction [23].

4. Existence and stability of the synchronous state

The truncated normal form obtained from (34-35) by neglecting O(ε2) terms is much

easier to analyze than the original equations (15-16). It is straightforward to find the

inphase solution for the truncated system and its stability analytically. Furthermore, if

the truncated system has a stable synchronous solution, so does the full system (15-16).
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Due to all-to-all coupling, the truncated normal form given by (34-35) is equivariant

under all permutations of the oscillators, as well as the the action of the group T 1 given

by θi → θi + C for all i. As a consequence, a number of phase locked states are

forced to exist [12]. In this section we consider the stability of the synchronous state

r1 = r2 = . . . rN = r, and θ1 = θ2 = . . . = θN . The stability of other phase locked states

can be analyzed similarly.

Assuming that rk = r, and θk − θj = 0 for all k and j, then equation (34) implies

that r must satisfy

rR(r) + r
κ

2Z
cos δ = 0. (36)

Remark 4 The amplitudes of the uncoupled oscillators are given by solutions of R(r) =

0, while in a synchronously oscillating network the amplitudes of the oscillators are given

as solutions of (36) in terms of the coupling strength κ, and properties of the coupling

load. It is possible that R(r) = 0 has only r = 0 as a solution, while (36) has nonzero

solutions for certain values of κ, Z, δ. In such examples, the uncoupled systems do not

oscillate, while the network can exhibit synchronous oscillations (see Section 5.3).

Due to the T 1 equivariance of the system, the Jacobian is constant along the

synchronous solution. Therefore the Floquet exponents equal the eigenvalues of the

Jacobian. At the synchronous solution determined by θk − θj = 0 and (36) they equal

λ1 = 0 (37)

λ2 = εrR′(r) (38)

λn,n+1 = εrR′(r)− ε κ
Z

cos δ (39)

± ε
√

(rR′(r))2 −
( κ

Z
sin δ

)2

+ 2rΘ′(r)
κ

Z
sin δ

where n = 3, 5, 7, . . . , 2N − 1. If r satisfies (36) and the λi>1 have non-zero real part

then the system obtained by truncating (34-35) has a weakly hyperbolic limit cycle

with ri = r and θi = θj for all i and j. If the limit cycle is stable the truncated

system is synchronized. Eigenvalues (38-39) are expressed in terms of the coupling

load parameters, and implicitly define the region corresponding to stable synchronous

behavior in parameter space.

It remains to show that the stability of the synchronous solution in the truncated

system implies the existence and stability of nearby synchronous solution in the

original system (15-16). Let ∆j−1,j = θj − θj−1 for j = 2, . . . , N , and let χ =

(∆1,2, . . . ,∆N−1,N , r1, . . . , rN). The only O(1) terms in equations (34-35), are the unit

terms in (35). By definition of ∆j−1,j, these terms do not occur in the differential

equation for χ. It follows that that in the new coordinates (χ, θ1), equations (34-35)

have the form

χ′ = εF1(χ) + ε2F2(χ, θ1)

θ′1 = 1 + εG1(χ) + ε2G2(χ, θ1). (40)
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The explicit form of F1, F2, G1, and G2 is not of importance.

To study the stability of the synchronous state χ0 = (0, r), we note that the

eigenvalues of εDχF1(χ0) are given by (38-39) when r = (r, r, . . . , r) and r satisfies

(36). The following proposition shows that if the eigenvalues λi have non-zero real part

then they completely determine the stability of the synchronous state for the full system

(15-16).

Proposition 2 If F1(χ0) = 0, and DχF1(χ0) has eigenvalues with non-zero real part in

(40), then there exists an ε0, such that system (40) has a limit cycle O(ε) close to the

limit cycle of the unperturbed system, obtained from (40) by setting F2 = G2 = 0, for

all ε < ε0. The Floquet exponents of the perturbed limit cycle agree with the eigenvalues

of DχF (χ0) to O(ε).

Proof: This is a consequence of standard results about near identity changes of

coordinates for systems with a single frequency. See [24, Chapter 1.22] and references

therein. �

Proposition 3 Assume that a nonzero solution r of equation (36) exists. If the

eigenvalues given in (38-39) have negative real part, then (15) has a stable, synchronous

periodic solution. If one of the eigenvalues has positive real part, this periodic solution

is unstable.

Proof: As a consequence of Proposition 2, depending on the real part of the

eigenvalues in (38-39) there is either a stable or unstable synchronous solution of system

(25-28). Since the change coordinates Bw = z affects all of the pairs of coordinates

(wk, w̄k) in the same way, a synchronous solution in the w coordinates corresponds to

a synchronous solution in the original z coordinates. The stability properties of this

solution are preserved under a linear change of coordinates. �

Remark 5 Theorem 1 only states that the truncated normal form provides an O(ε)

approximation on timescale of O(1/ε), and typically this approximation does not hold

on longer timescales. Nevertheless, Proposition 2 implies that the limit cycle of the

truncated normal form approximates the limit cycle of the original system to O(ε), since

the approximation of the amplitude χ is valid for all time.

Remark 6 In [15], a stroboscopically discretized system was used in a heuristic

argument to obtain similar result in the case of van der Pol oscillators. There it was

necessary to determine the angular frequency of the inphase solution to O(ε) in order

to find appropriate strobing period. The angular frequency of the periodic solution can

also be estimated from (34-35) up to second order as

ω = 1− ε
(

Θ(r) +
κ

2Z
sin δ

)

. (41)
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Figure 2. Floquet multipliers for a van der Pol oscillator array. Solid line represents
analytical result, while dots represent results obtained from numerical calculations.
The coupling parameters are κ = 1, ε = 0.1, and (a) µ2 = 0.8, (b) µ2 = 1.5.

5. Examples

The synchronization condition for the array of globally coupled oscillators is obtained

from (38-39) by setting λi < 1 for all i > 1, and can be expressed in terms of control

parameters µ1 and µ2. In general, our method allows us to do a single calculation

for a certain network configuration, and then obtain results for a variety of different

oscillators in a straightforward fashion. To find the synchronization condition for a

specific oscillator type it suffices to find the function φR which characterizes the resonant

terms in the equation of motion of the uncoupled oscillator. We illustrate this in several

examples and compare our approximating solutions with numerical results. Agreement

between analytical and numerical calculation is good even when using only first order

corrections in ε. We retrieve result from [15] as a special case of our general result.

5.1. Van der Pol oscillator arrays

Consider a network of globally coupled van der Pol oscillators described in Sec. 2.1.

From (14) we find that the resonant terms are described by φR = 1/2 − ww̄/8, and

hence R(r) = 1/2− r2/8, Θ(r) = 0. From (36) we find that the inphase state exists for

r = 2
√

1 + κ cos δ/Z. By substituting expressions for R(r) and Θ(r) in (38) and (39)

we find the Floquet exponents for the synchronous solution

λ2 = − ε

2

(

1 +
κ

Z
cos δ

)

(42)

λn,n+1 = − ε

2

(

1 + 2
κ

Z
cos δ

)

± ε

2

√

(

1 +
κ

Z
cos δ

)2

−
( κ

Z
sin δ

)2

. (43)

In order to test our results we evaluate Floquet multipliers ‖ numerically and compare

them to the values estimated from (43). The results are O(ε) close (Fig. 2).

‖ In these comparisons we use Floquet multipliers for convenience, since they are easier to handle
numerically. The Floquet multipliers are given by Λi = e2πλi/ω +O(ε2), where ω is given by (41).
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Figure 3. Floquet multipliers for a van der Pol-Duffing array. Coupling parameters
are α = −0.2, κ = 1, ε = 0.1, and (a) µ2 = 0.8, (b) µ2 = 1.5.

5.2. Van der Pol–Duffing equation

In a recent study of micromechanical and nanomechanical resonators models using

parametrically driven Duffing oscillators [25] and van der Pol–Duffing oscillators [4]

are proposed. The van der Pol–Duffing equation

x′′ + x− ε(1− x2)x′ − εαx3 = 0, (44)

is obtained from the van der Pol equation by an addition of a cubic term. By switching

to complex coordinates (11) and writing (44) in normal form we obtain

z′ = − iz +
ε

8
(4z − z2z̄ + i3αz2z̄)

z̄′ = iz̄ − ε

8
(−4z̄ + zz̄2 + i3αzz̄2).

The resonant part of the nonlinearity is given by φR(r) = (4− r2 + i3αr2)/8. The real

part of φR is the same as in the case of van der Pol oscillator, so this system has the

same inphase solution. Substitute the real part R(r) = 1/2− r2/8 and imaginary part

Θ(r) = 3αr2/8 of φR in (38) and (39) to find the approximate Floquet exponents

λ2 = − ε

2

(

1 +
κ

Z
cos δ

)

(45)

λn,n+1 = − ε

2

(

1 + 2
κ

Z
cos δ

)

(46)

± ε

2

√

(

1 +
κ

Z
cos δ

)2

−
( κ

Z
sin δ

)2

+ 3α
κ

Z
(2 sin δ +

κ

Z
sin 2δ).

The numerical simulations (Fig. 3) support our result. Note that it follows from (20)

that our approximations can be expected to break down for small values of µ1.

5.3. Synchronizing sources and sinks

As noted in Remark 4, it is possible to turn a network of systems with flows that have

only a source (or sink) at the origin into a network of synchronous limit cycle oscillators
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Figure 4. The radius of the periodic, inphase solution is obtained by solving
(36). For an array of elements (47) it is given by the intersection of the curve
rR(r) = r/2(r2 − 3.6r + 3.32) and the line −κ cos δ/(2Z)r. If the slope of the line
is too small only the trivial solution r = 0 exists, and the system does not exhibit limit
cycle oscillations.
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Figure 5. Phaseplane (left) and time diagram (right) of inphase limit cycle solution
for coupled sources (47). Dashed line represents the solution for the truncated normal
form system, and solid line numerical solution for the full system.

with an appropriate coupling. Consider a dynamical system described by

x′′ + x− εx′
[

4x2

(

1− 3.6√
x2 + x′2

)

+ 3.32

]

= 0. (47)

Each individual system has only an unstable fixed point at the origin, and no other

repellers or attractors. Coupling these systems as in (15-16), and switching to complex

variables (11), gives the following equations of motion

z′ = − iz + iεf(z, z̄) (48)

z̄′ = iz̄ − iεf(z, z̄) (49)

where the nonlinear term is

f(z, z̄) =
z − z̄

2i

[

(z + z̄)2

(

1− 3.6√
zz̄

)

+ 3.32

]

. (50)
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Figure 6. Floquet multipliers for coupled sources. κ = 1, ε = 0.1, and (a) µ2 = 0.8,
(b) µ2 = 1.1.

If we keep resonant terms only, (48) and (49) become

z′ = − iz + εzφR(zz̄) (51)

z̄′ = iz̄ + εz̄φR(zz̄) (52)

with φR = R(r) = 1/2(zz̄ − 3.6
√
zz̄ + 3.32).

From (36) we find that the limit cycle solution does not exist for −κ cos δ/(2Z) <

0.08. Below that value the coupled elements behave as unstable foci, which can

be easily checked numerically. As −κ cos δ/(2Z) increases above 0.08 the system

undergoes a supercritical saddle-node bifurcation of limit cycles, in which a stable and

an unstable inphase limit cycle are created. These two solutions are are represented as

the intersection of the curve R = r/2(r2− 3.6r+ 3.32) and the line R = −κ cos δ/(2Z)r

in Fig. 4. For a suitable choice of coupling parameters it is possible to obtain inphase

limit cycle solutions for the array of sources. In Fig. 5 we show oscillations of an element

in the array, when the coupling parameters are set to κ = 1, µ1 = 1.2 and µ2 = 0.8. The

Floquet exponents for both limit cycles are readily obtained from (39). These results

agree with numerical calculations to the expected error. In Fig. 6 we present results for

the “stable” cycle.

We note that a direct extension of the method discussed in the previous sections

was used to derive these results, since the nonlinear term in (47) is not a polynomial

(see [22]).

6. Conclusion

In our study of synchrony in globally coupled oscillator arrays we introduce a normal

form based method, which has a number of advantages over methods commonly found in

the physics literature. The method provides a clear and mathematically rigorous way of

finding the onset of synchronization in the array with respect to changes in the control

parameters. It allows for an easy distinction between contributions to the dynamics

coming from the network configuration and those coming from the internal structure
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of the network elements. As a consequence, we are able to carry out calculations

for particular network architectures without having to specify the exact form of the

nonlinearities in the individual elements.

To apply these results to specific weakly nonlinear oscillators it is only necessary

to find the function φR, which characterizes the resonant part of the nonlinearity, and

substitute it in the general solution thus obtained. The function φR does not depend on

the coupling scheme, and is easily derived from the equations for the uncoupled systems.

It is therefore tempting to think of synchronization classes as different systems may lead

to the same φR.

Although we have chosen a very specific linear coupling in our exposition, the

method can be applied to a variety of network configurations simply by retracing the

steps we outlined. A similar calculation can be carried out even if there is a weak

nonlinearity in the coupling equation (16) itself. Moreover, the method can be extended

to higher orders in the small parameter in a straightforward fashion, and the procedure

can be automated.

The analysis of the synchronous solution of the network (15-16) was particularly

simple due its SN symmetry. When the network has less symmetry, or only local

symmetries (see [26]), a similar reduction can be performed. In such networks one

expects polysynchronous solutions, in which groups of oscillators within the network

oscillate synchronously. One can further expect to obtain a pair of equations for each

cluster of oscillators in the network [12]. The stability of these clusters can then be

analyzed in a manner similar to the one introduced in this paper.

Although we have not treated the case of Josephson junctions, a similar analysis

can also be performed. In fact we believe that coherent behavior in networks of various

dynamical systems can be studied using the method of normal forms, and intend to

investigate this in the future.
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[8] R.E.L. DeVille, A. Harkin, K. Josić, and T. Kaper. Applications of normal form theory to weakly
nonlinear ordinary differential equations. submitted, 2003.

[9] J.A. Murdock. Normal forms and unfoldings for local dynamical systems. Springer Monographs
in Mathematics. Springer-Verlag, New York, 2003.

[10] J. Carr. Applications of centre manifold theory, volume 35 of Applied Mathematical Sciences.
Springer-Verlag, New York, 1981.

[11] N. Kopell and G. B. Ermentrout. Symmetry and phaselocking in chains of weakly coupled
oscillators. Comm. Pure Appl. Math., 39(5):623–660, 1986.

[12] P. Ashwin and J. W. Swift. The dynamics of n weakly coupled identical oscillators. J. Nonlinear
Sci., 2(1):69–108, 1992.

[13] F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural networks. Springer-Verlag,
New York, 1997.

[14] S. Han, B. Bi, W. Zhang, and J. E. Lukens. Demonstration of josephson effect submillimeter wave
sources with increased power. Appl. Phys. Lett., 64(11):1424–1426, 1994.
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