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Abstract

This article highlights several applications of mathematics to the design of musical instru-
ments. In particular, we consider the physical properties of a Norwegian folk instrument called
the willow flute. The willow flute relies on harmonics, rather than finger holes, to produce a
scale which is related to a major scale. The pitches correspond to fundamental solutions of the
one-dimensional wave equation. This “natural” scale is the jumping-off point for a discussion of
several systems of scale construction—just, Pythagorean, and equal temperament—which have
connections to number theory and dynamical systems and are crucial in the design of keyboard
instruments. The willow flute example also provides a nice introduction to the spectral theory
of partial differential equations, which explains the differences between the sounds of wind or
stringed instruments and drums.

1 Introduction

The history of musical instruments goes back tens of thousands of years. Fragments of bone flutes
and whistles have been found at Neanderthal sites. Recently, a 9, 000-year-old flute found in China
was shown to be the world’s oldest playable instrument.1 These early instruments show that humans
have long been concerned with producing pitched sound—that is, sound containing predominantly
a single frequency. Indeed, finger holes on the flutes indicate that these prehistoric musicians had
some concept of a musical scale.

The study of the mathematics of musical instruments dates back at least to the Pythagoreans,
who discovered that certain combinations of pitches which they considered pleasing corresponded to
simple ratios of frequencies such as 2:1 and 3:2. The problems of tuning, temperament and acoustics
have since occupied some the brightest minds in the natural sciences. Marin Marsenne’s treatise on
tuning and acoustics Harmonie Universelle (1636) [19], H. v. Helmholtz’s On the Sensations of Tone
(1870) [15], and Lord Rayleigh’s seminal The Theory of Sound (1877) [21] are just three outstanding
examples.

Many pages have been written on this subject. We mean to present an overview and let the inter-
ested reader find more detailed discussions in the references, and on our web site www.sju.edu/∼rhall/newton.

2 The willow flute

In this section we consider the physical properties of a Norwegian folk flute called the seljefløyte,
or willow flute. This instrument can be considered “primitive” in that it does not rely on finger
holes to produce different pitches. Rather, by varying the strength with which he or she blows into

1Pictures and a recording of this flute are available at http://www.bnl.gov/bnlweb/flutes.html.
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Figure 1: Musicologist Ola Kai Ledang playing the willow flute

the flute, the player selects from a series of pitches called harmonics whose frequencies are integer
multiples of the flute’s lowest tone, called the fundamental. The willow flute’s scale is approximately
a major scale with a sharp fourth and flat sixth, and plus a flat seventh.

The willow flute is a member of the recorder family, though it is held transversally. The flute
is constructed from a hollow willow branch (or, more recently, a PVC pipe2). One end is open
and the other contains a slot into which the player blows, forcing air across a notch in the body
of the flute. The resulting vibration creates standing waves inside the instrument whose frequency
determines the pitch. The recorder has finger holes which allow the player to change the frequency
of the standing waves, but the willow flute has no finger holes. However, it is evident from the tune
Willow Dance (Figure 2), as performed by Hans Brimi on the willow flute [8], that quite a number
of different tones can be produced on the willow flute. How is this possible?

Figure 2: Transcription of Willow Dance, as performed by Hans Brimi

The answer lies in the mathematics of sound waves. Let u be the pressure in the tube, x be
the position along the length of the tube, and t be time. Since the pressure across the tube is close
to constant, we can neglect that direction. We will choose units such that the pressure outside the
tube is 0.

The one-dimensional wave equation

a2 ∂
2u

∂x2
=
∂2u

∂t2

provides a good model of the behavior of air molecules in the tube, where a is a positive constant.
Since both ends of the tube are open, the pressure at the ends is the same as the outside pressure.

2Instructions for making a PVC “willow” flute and sound clips may be found at the quirky but informative web
site http://www.geocities.com/SoHo/Museum/4915/SALLOW.HTM.
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That is, if L is the length of the tube, u(0, t) = 0 and u(L, t) = 0. Solutions to the wave equation
are sums of solutions of the form

u(x, t) = sin
nπx

L
(b sin

anπt

L
+ c cos

anπt

L
)

where n = 1, 2, 3, . . ., and b and c are constants. The derivation of this solution may be found in
most textbooks on differential equations such as [7].

How does our solution predict the possible frequencies of tones produced by the flute? For now,
let’s just consider solutions which contain one value of n. Fix n and x and vary t. The pressure, u,
varies periodically with period 2L

an . Therefore,

frequency =
an

2L

for n = 1, 2, 3, . . ..
This formula suggests that there are two ways to play a wind instrument: either change the

length L, or change n.3 Varying L continuously, as in the slide trombone or slide whistle, produces
continuous changes in pitch. The more common way to change L is to make holes in the tube, which
allow for discrete changes in pitch. The other way to vary the pitch is to change n—that is, to jump
between solutions of the wave equation. The discrete set of pitches produced by varying n are the
harmonics. Specifically, the pitch with frequency an

2L is called the nth harmonic; if n = 1 the pitch
is the fundamental or first harmonic.4

The sequence of ratios of the frequency of the fundamental to the successive harmonics is 1:1, 1:2,
1:3, 1:4, . . . (note the connection to the harmonic series 1 + 1

2 + 1
3 + 1

4 + · · ·). If the first harmonic is
a C, then the next five harmonics are C′, G′, C′′, E′′, and G′′, where the prime denotes the pitch an
octave higher. The fourth, fifth, and sixth harmonics form what is called a major chord, one of the
primary building blocks of Western music. However, this solution still doesn’t completely explain
the willow flute.

Let’s take a closer look at the willow flute player’s right hand (Figure 1). The position of his
fingers allows him to cover or uncover the hole at the end of the flute. In other words, the player is
able to change the boundary condition at that end. At the closed end, air pressure is constant in
the x direction, so the boundary conditions become u(0, t) = 0 and ux(L, t) = 0. Solving the wave
equation as before, we get a set of solutions for which

frequency =
an

4L

for n = 1, 3, 5, 7, . . .. Since the original value of frequency was an
2L , closing the end has dropped the

fundamental an octave and restricted the harmonics to odd multiples of the fundamental frequency.
Combining the harmonics produced with end closed and with end open, we see that in the third
octave (relative to the fundamental of the open pipe) there is a nine-note scale available, which we
will call the flute’s playing scale. As an aid to visualization, these two sets of harmonics are shown
in their approximate positions on a piano keyboard in Figure 3, assuming the fundamental of the
open pipe is tuned to a C. However, it should be emphasized that pianos are not commonly tuned
to the willow flute’s scale!

How necessary is this second set of harmonics? The harmonics produced by the open pipe in
the fourth octave from its fundamental form the same scale as the combined open- and closed-end

3For stringed instruments, which are also governed by the one-dimensional wave equation, there are three ways,
since you can also change the value of a by changing the tension on the string (for instance, by string bending) or by
substituting a string of different density.

4The term overtone is also used to describe these pitches, but the nth harmonic is called the (n− 1)st overtone.
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Figure 3: Approximate location of the willow flute’s pitches on a piano

scale, but an octave higher. In fact, if we don’t care which octave we’re in, the willow flute can
theoretically produce pitches arbitrarily close to any degree of the scale, even without changing the
boundary condition. However, this solution is impractical. The higher harmonics are not only less
pleasing to the ear, but also more difficult to control. In order to produce the rapid note changes
required for the Willow Dance, the player needs the second set of harmonics. Some willow flute
players extend this technique by covering the end hole only halfway to produce an intermediate set
of pitches, or by continuously changing the boundary condition to produce a continuous change in
pitch.

So far, we have only considered those solutions to the wave equation of the form

u(x, t) = sin
nπx

L
(b sin

anπt

L
+ c cos

anπt

L
)

A more general solution is a sum of several of these. In such a sum, the terms containing the
smallest values of n generally have the greatest amplitude and determine the pitch and character
of the sound. In particular, the fundamental predominates and it is perceived as the pitch of the
sound. The relative volumes of the harmonics explains how we can distinguish the sounds of different
musical instruments. For instance, the clarinet’s sound contains only odd harmonics, as does the
sound of the willow flute with the end closed. Sethares’ fascinating book [25] proposes that Western
music uses scales based on small integer ratios of frequencies precisely because the sound of winds
and strings consists of harmonics. When two such instruments play notes from the same scale, many
of the harmonics produced by the instruments will correspond, creating an effect pleasing to the ear.

To fully describe the acoustic properties of instruments, it is also necessary to take into account
nonlinear effects. This is still a very active area of research, and a good overview may be found in
[12].

3 From melody to harmony: keyboard instruments

In this section, we use the willow flute as the jumping-off point for a discussion of scale construction.
The willow flute’s playing scale is appealing mathematically in that each ratio of frequencies within
the scale can be expressed with small integers. And, since the music traditionally played on the
willow flute is exclusively melodic and centered on the key of its fundamental, we are less concerned
with the relationships of the notes within its scale to one another. However, when we try to use
this system to design keyboard instruments, problems arise. For instance, we would like the 4:5:6
relationship of the major chord to be replicated in several locations on our keyboard, and we would
like our instrument to sound “good” in several different keys. It turns out that these goals are not
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note 1 2 3 4 5 6 7 8 9
willow flute 1:1 9:8 5:4 11:8 3:2 13:8 7:4 15:8 2:1

just intonation 1:1 9:8 5:4 4:3 3:2 5:3 15:8 2:1
note 1 2 3 4 5 6 7 8

Table 1: Comparison of just intonation and the willow flute’s playing scale

simultaneously achievable. The story of the attempts to resolve this issue illustrates one of the most
interesting intersections of mathematics and aesthetics.

3.1 Just intonation

We begin by writing down the ratios of frequencies of the nine notes in the willow flute’s playing
scale to the first note of that scale (Table 1). These are computed by finding the relationship of each
note to the flute’s first harmonic and then dividing to find their relationship to each other. Observe
that the sequence of ratios in this scale can be written 8:8, 9:8, 10:8, . . ..

A major chord is comprised of three notes whose ratio of frequencies (give or take an octave) is
4:5:6. We see that there are two major chords in the willow flute’s scale: the chord formed by the
first, third, and fifth notes in its scale (called the I chord), and the chord formed by the fifth, eighth,
and second notes (called the V chord). Just intonation is based on an eight-note scale which may
be decomposed into three major chords: I, V, and IV, which contains the fourth, sixth, and eighth
notes of the just intonation scale. Many versions of just intonation were proposed between the 15th
and the 18th century, most differing on how to construct the remaining notes in the chromatic scale
[3], [5]. A history of the various systems and practical guidelines on how they may be implemented,
as well as discussion of Mersenne’s work on this problem, is found in [16].

Just intonation has several problems. One of the most glaring is the ratio of the sixth to second
degrees of the scale, which is 40:27, rather than 3:2. When just intonation is used, the same note may
have a different pitch in several keys. For instance, the ratio of A to G is equal to 10:9 when we’re
playing in C, rather than 9:8 when we’re playing in G. The players of stringed and wind instruments
can make these small adjustments in pitch as they play; however, a different system must be devised
for instruments with fixed pitch. Various compromises have been proposed, including tempered scales
which involve adjustments to just intonation. Another solution for keyboard instruments is to add
keys, or allow for the alteration of pitch by an application of levers or pedals. Many ingenious
methods were developed to translate these ideas into practice, from the earliest known being the
organ of St. Martin’s at Lucca having separate keys for E[ and D] up to the “Enharmonium” of
Tanaka which separated the octave into 312 notes [3]. One of the few instruments of this type in use
today is the English concertina, which has separate buttons for E[ and D] and for A[ and G]. Most
modern concertina players opt to have their instruments tuned to equal temperament, however.

3.2 The Pythagorean scale

In the previous construction we saw that intervals are formed by multiplying a fundamental frequency
by a rational number. Pythagoras discovered that the 2:1 ratio of an octave and the 3:2 ratio of a
fifth are particularly consonant and used them as the basis for a scale. His construction avoids the
problem of some fifths being out of tune in just intonation. The idea is to start with a fundamental
frequency and multiply repeatedly by 3

2 to obtain other notes in the scale. Two notes that are an
octave apart represent the same degree of the scale. Therefore, if multiplying a frequency f by 3

2
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gives us a frequency which is not in the octave in which we started—that is, if 3
2 × f > 2—we can

divide the result by 2 to return to the original octave.
It will be convenient to work with logarithms of base 2 of a given frequency, rather than the

frequency itself. If we choose units such that middle C has frequency 1, then in the logarithmic
units middle C has frequency log2 1 = 0, while C′, an octave above middle C, has logarithmic
frequency 1 since 21 = 2. Setting x = log2 f and taking the logarithm base 2 we obtain

x→ x+ log2

3
2

as the mapping taking a tone to its fifth in logarithmic units. Since dividing by 2 corresponds to
subtracting 1 on the logarithmic scale, and since we subtract 1 only if x+ log2

3
2 > 1, we obtain the

following map on the interval [0, 1]:

x→ x+ log2

3
2

(mod 1).

By identifying the endpoints of the interval [0, 1], this map can be thought of as an irrational
rotation of a circle. It is a well-known fact that an initial point x0 never returns to itself under the
iteration of such a map. Rather, its images fill the circle densely [11]. Therefore, if we move by
fifths, we will never return to the the frequency with which we started. This fact has unfortunate
consequences for the construction of a scale, as was discovered by the Pythagoreans. This problem
is most apparent in instruments with fixed pitch.

3.3 Equal temperament

Equal temperament involves approximating an irrational rotation of the circle by a rational one.
There is a natural geometric way to think about this approximation. The graph of the line y = µx
intersects the vertical lines x = q, where q is a positive integer, at the points µq. The decimal part
of this number is exactly the q-th iterate of 0 under the rotation map x→ x+ µ (mod 1).

If µ is irrational this line does not pass through any points of the lattice Z×Z, and therefore an
irrational rotation of the circle has no periodic orbits. A line passing through a point (q, p) ∈ Z×Z
that lies close to y = µx gives rise to a rotation x → x + p

q (mod 1) which approximates the
rotation x→ x+µ (mod 1). If the fraction p

q in the approximate mapping is in reduced form, the
orbit of any point has period q, and the points of the orbit are distributed uniformly around the
circle. In other words, we can use this approximation to divide the octave into q equal parts. Scales
constructed in this way are called equally tempered.

The following is a geometric way to find a sequence of points (q, p) ∈ Z×Z which are successively
closer to y = µx.5 Imagine a string attached to infinity extending to the origin along the line y = µx.
Also imagine that a nail is driven through each point in the plane with positive integer coordinates.
If we pull the free end of the string up or down it will touch the nails which are closest to the line
y = µx. The region bounded by the pulled-up string and the line x = 1 is the convex hull of the
points above y = µx. The pulled-down string bounds the convex hull of the points below y = µx.

For instance, if µ = log2
3
2 , the string touches (1, 1), (5, 3), (41, 24), (306, 179), . . .when it is pulled

up, and (2, 1), (12, 7), (53, 31), . . . when it is pulled down, as shown in Figure 4, where the string
bounds the gray areas. Therefore log2

3
2 is approximated well by the sequence 1, 1

2 ,
3
5 ,

7
12 ,

24
41 ,

31
53 ,

179
306 , . . ..

The meaning of “approximated well” can be made precise. Consider the following construction:
Let e−1 = (0, 1) and e0 = (1, 0). If ek−1 and ek are given, let ek+1 be the vector obtained by adding
ek to ek−1 as many times as possible without crossing y = µx.

5This discussion follows the presentation in [1]. The construction is originally due to F. Klein.
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Proposition 1 The oriented area of the parallelogram spanned by the vectors ek−1 and ek is (−1)k,
when orientation is taken into account.

Proof. Every subsequent parallelogram shares a side and altitude with its predecessor. 2

Corollary 1 The points ek, k > 0, are extreme points of either the upper or lower convex hulls.

Proof. If the points ek−1 and ek were not on the convex hull, the parallelogram formed by
the vectors ek−1 and ek would have to contain a point in Z × Z. By Pick’s Theorem [26] such a
parallelogram has area greater than 1 contradicting Proposition 1. 2

The following is another straightforward corollary [1].

Corollary 2 If qk and pk are the coordinates of ek, k > 0, then∣∣∣∣µ− pk
qk

∣∣∣∣ < 1
q2
k

.

This corollary shows that the numbers we obtained in the geometric constructions are the con-
vergents obtained in the continued fraction expansion of µ, and in this sense the best rational
approximations to µ. Detailed discussions of continued fractions can be found in [14], while their
applications to music are discussed in [2]. In particular, note that log2

3
2 is a transcendental number,

which means that the complexity of its rational approximations increases rapidly.
There are several things to consider when choosing any of these approximations as the basis for a

scale. The period of a rational rotation is determined by the denominator of the fraction p
q . A large

denominator leads to a scale with many notes. This is impractical, due to the physical constraints
of instruments and our inability to distinguish tones which are very close in pitch.

It is at least in part due to these considerations that the approximation log2
2
3 ≈

7
12 is used

as the basis of Western music. Figure 3.3 shows how the evenly spaced tones obtained from this
approximation divide the octave into 12 and 41 parts (41 parts providing the next best approxima-
tion). The gray dots represent just intonation. It is evident that the just intonation scale is fairly
well approximated by the equally tempered twelve-note scale. This is somewhat fortuitous, as we
have made no effort to approximate the 5:4 ratio of a third in the above construction. Whether the
benefits obtained by this construction outweigh the price that we have to pay in having all intervals
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Figure 5: The circle divided into 12 and 41 equal parts

“impure” is still a subject of debate. A Mathematica application which explores this construction
in more detail is available at www.sju.edu/∼rhall/newton.

There are other ways of constructing equally tempered scales. We could try to find rational
numbers with equal denominators that approximate both the fifth and third well. The associated
rotation would divide the circle into a number of equal parts. This approach leads to the theory
of higher-dimensional continued fractions which are still a subject of much research [2], [18]. Many
equally-tempered scales were explored in the past, from the 17-note Arabian scale to the 87-note
division praised by Bosanquet. Easley Blackwood [6] has written compositions for each of the
equally tempered scales containing 13 to 24 tones. J. M. Barbour and D. Benson present excellent
historical reviews of this subject [3], [5]. The reader is invited to compare the merits of the different
subdivisions using the Mathematica program available on the authors’ web page.

The scale of twelve equally tempered notes leads to another interesting question. The distance
between the frets of an equally tempered stringed instrument such as a guitar or a lute has to be
scaled by the ratio 2

1
12 : 1. Since 2

1
12 = (2

1
3 )

1
4 this problem is equivalent to duplicating a cube, a task

which cannot be accomplished by Euclidean methods. Constructing this ratio with the methods of
measurement available in the 16th and 17th century was a difficult task and finding an approximation
was of considerable utility. A number of interesting approaches, including ingenious constructions
by Galileo Galilei’s father and Stähle are discussed in [4].

4 Drums and other higher-dimensional instruments

So far we have considered only instruments that are essentially one-dimensional. All stringed and
wind instruments fall into this category. Percussion instruments such as drums and bells do not.
Why is that? Let us think of a drum with a circular drumhead as a circular domain of radius R
around the origin in R2 obeying the wave equation with fixed boundary. Using polar coordinates
(r, φ) and separation of variables it can be shown that the transversal displacement of the drumhead
at time t is given by F (r, φ, t) = g(t) f1(r) f2(φ) where

g′′(t) + c2λg(t) = 0 f ′′2 (φ) + µf2(φ) = 0 (1)

f ′′1 (r) +
1
r
f ′1(r) + (λ− µ

r2
)f2(r) = 0. (2)

8



The constant c is related to the physical properties of the material, and λ and µ are determined
from the conditions f2(−π) = f2(π) and f1(R) = 0. See [20] for more details.

The equations for g and f2 are easy to solve. The constraints on f2 force µ = m2 which means
that (2) is exactly the m-th Bessel equation whose solution are given in terms of the m-th Bessel
function as f1(r) = Jm(r

√
λ). Since the drumhead is fixed along its boundary this means that

f1(R) = Jm(R
√
λ) = 0 and so λ can only assume the values

λn =

(
x

(m)
n

R

)2

(3)

where x
(m)
n are the zeros of the m-th Bessel equation. The different values of λ determine the

frequencies of oscillation of the different modes, as in the case of the willow flute. Since the zeros are
irrationally related, it follows that the frequencies of oscillations of the drumhead cannot be rational
multiples of each other. This is why drums using a freely oscillating circular membrane produce
notes of a discernibly different tonal character than that of one-dimensional instruments.6

Of course, we do not have to restrict ourselves to the case of circular drums. We can consider the
wave equation on a general domain D in R2 and look for solutions that satisfy F (x, y, t) = 0 on the
boundary ∂D. Separating variables as F (x, y, t) = Ψ(t)Φ(x, y) lets one conclude that the general
solution is of the form F (x, y, t) = sin(

√
λt)Φ(x, y) where

∇2Φ + λΦ = 0 in D and Φ = 0 on ∂D (4)

As we have seen before, a solution to this problem exists only for certain values of λ known as
eigenvalues. These eigenvalues depend on the shape of the drum D, and are the squares of the
frequencies of vibrations of the different modes.

In his beautiful article Can one hear the shape of a drum? M. Kac asked whether two drums
with the same eigenvalue spectrum necessarily have the same shape [17]. Kac proved that certain
characteristics of the domain, such as its area and circumference, are indeed determined by the
eigenvalues. The general problem remained unsolved for 24 years until Gordon et. al. showed that
two non-congruent drums can have the same spectrum [13]. For an explicit construction of two such
drums see [9].

We still have one dimension remaining: can we characterize the sound of three-dimensional
instruments? All three-dimensional instruments fall into the class of percussion instruments. If we
write the wave equation for some simple geometric shapes—for instance, a rod—we can conclude
that the frequencies of the different modes of vibration are not rationally related.7 There are,
however, three-dimensional instruments whose sounds are similar to the sounds of one-dimensional
instruments: the marimba, the glockenspiel, claves, and others. There are several ways in which
this is achieved. Some three-dimensional objects, such as rods, vibrate predominantly in a one-
dimensional fashion. On the other hand, the bars on a marimba corresponding to lower tones have
deep arches on one side. These are cut in such a way that the first two modes of vibration of the

6One instrument that does not fit within this picture is the timpanum. The membrane of the timpanum is truly
two-dimensional, and yet its sound is similar to that of one-dimensional instruments. Unlike a tambourine, the
timpanum has a closed bottom and its vibrations change the pressure in the cavity beneath the oscillating membrane.
Therefore its membrane is not freely oscillating and additional nonlinear forcing terms have to be added to the wave
equation to accurately describe its behavior. By carefully tuning the bowl beneath the membrane, the frequencies of
the first few modes of vibration can be related as 2:3:4:5 [10].

7Instruments of this type are uncommon in Western music. Sethares [25] shows that the scales used by the
Indonesian gamelan are related to the gamelan instruments’ spectra, which consist of tones which are not rationally
related to the fundamental.
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bar are rationally related. Since the higher notes are above the 2000 Hz range, they are not as
important in determining the perceived sound of those bars. Excellent descriptions of percussion
instruments can be found in the works of Rossing [22], [23], [24] (a more popular treatment), and
[12] (with Fletcher).

Acknowledgments We thank the anonymous referees and Paul Klingsberg for their helpful com-
ments and references, Ola Kai Ledang for the photo, and David Loberg Code for information about
the willow flute.
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KREŠIMIR JOSIĆ is a visiting assistant professor of mathematics at Boston University. He
received a B.Sc. in physics and mathematics from the University of Texas at Austin in 1994 and a
Ph.D. in mathematics from the Pennsylvania State University in 1999. His main research interest
are the applications of the theory of dynamical systems. He is also a jazz bass player.
Department of Mathematics and Statistics, Boston University, 111 Cummington Street, Boston, MA
02215
josic@math.bu.edu

11


