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Abstract

The geometric theory of phase locking between periodic oscillators is extended
to phase coherent chaotic systems. This approach explains the qualitative
features of phase locked chaotic systems and provides an analytical tool for a
quantitative description of the phase locked states. Moreover, this geometric
viewpoint allows us to identify obstructions to phase locking even in systems
with negligible phase diffusion, and to provide sufficient conditions for phase
locking to occur. We apply these techniques to the Rossler system and a phase
coherent electronic circuit and find that numerical results and experiments

agree well with theoretical predictions.
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I. INTRODUCTION

While the study of phase locking between periodically oscillating systems dates back to
Huygens [1] the investigation of phase locking between chaotic systems has a more recent
history. Its occurrence was noted in [2-4] and the phenomenon has since been observed
in such diverse systems as electrically coupled neurons [5,6], spatially extended ecological
systems [7], earthquake models [8], a plasma discharge tube [9], and its potential role in
brain functions has been recognized [10,11].

Although much work has been done on detecting and analyzing chaotic phase synchro-
nization (CPS), the phenomenon is still not completely understood and predictive methods
are still lacking. In the chaotic systems studied in [4] it is possible to define a phase variable
which varies periodically up to a small chaotic term. If this chaotic term can be treated as
white noise then the theory developed in [12] is applicable. A similar approach is considered
in [13,14] where the phase is modeled by a stochastically driven overdamped particle. Since
periodic orbits form a skeleton of a strange chaotic attractor, it was argued in [15] that
CPS can be described in terms of the phase locking properties of these periodic orbits. The
detailed structure of attractors in the CPS regime was analyzed further in [16].

Many of these approaches describe behavior that agrees well with that observed in sys-
tems exhibiting CPS. However, predictive methods for computing when and how CPS occurs
have not been discussed in detail. Moreover, the question whether CPS is possible in all
phase coherent systems has, to our knowledge, not been addressed.

In the following we describe such predictive methods based only on information about
the unperturbed system, the type of driving signal and the nature of the coupling. We give
a geometrical description of how CPS occurs, and show how to predict the driving strength
necessary for CPS, the phase difference between the drive and response in the CPS regime,
and by how much this phase difference varies. Moreover, this approach also identifies a
geometric obstruction to CPS in phase coherent systems, which may be present even if

the phase diffusion is negligible. This theory is well developed in the case of systems with



stable limit cycles [17-20] and we address the questions when and how it can be extended
to systems with stable, phase-coherent chaotic attractors.

In Section IT we give the mathematical details of how the geometric theory of periodic
phase locking described in [20] can be extended to chaotic oscillators. These ideas are
applied to the Rossler equations (Section III) and to an electronic circuit based on the
partially linear Réssler equations (Section IV), and the theoretical predictions are verified
numerically and experimentally. In Section V we further discuss sufficient conditions under
which a phase-coherent attractor can be phase locked to a periodic drive, and demonstrate
that the amount of phase diffusion and the geometry of the attractor are equally important.
Sufficient conditions under which a chaotic attractor is phase-coherent are discussed in the

Appendix.

II. A DESCRIPTION OF CPS USING ISOCHRONS

A frequent goal in science and engineering is to predict how the behavior of a periodically
oscillating system changes when it is subject to an outside perturbation [17,19]. Ideally
such predictions should be based only on information about the unperturbed system, and
the type of perturbation acting upon it, thus avoiding the work of performing numerous
experiments. In this section we describe how this can be achieved in the case of a small,
periodic perturbation acting on a chaotically oscillating system.

We first review the theory for a periodically perturbed nonlinear oscillator following the
approach in [20]. Assume that the system X' = F(X) has an exponentially stable limit cycle
p of period T. It is possible to find coordinates (¢, R) in a tubular neighborhood N of p
such that the phase ¢ is the angular distance along p, R measures the radial distance from
p, and ¢' = do/dt = 1.

The level sets of ¢ are called isochrons and define codimension one manifolds that foliate
N. Every isochron intersects p in a single point g4, called the basepoint of the isochron. Let

¢¢ be the flow of X’ = F(X). There exist C, k > 0 such that for any point p on an isochron



with basepoint g, we have |¢;(p) — ¢1(gs)| < Ce . Therefore the asymptotic behavior of
all points on an isochron is the same as that of its basepoint.

If the system is subject to a small perturbation ep(t) of period Ty so that X' = F(X) +
ep(t), the theory of invariant manifolds [21] implies that the perturbed system possesses an

attracting limit cycle p. which is O(e) close to p. A direct calculation shows that

¢ = 1+eVxs

pe(®) - P(1)
= 1+ eVxdlyg) - P(t) + O(€)

Y1+ eQg, 1) + O().

where Vx ¢|,.(¢) is the gradient of ¢(X) evaluated at the point p.(¢) of the perturbed orbit
and the first equality follows from the O(€) closeness of p and p.. Since Vx¢ points along the
direction of fastest increase of ¢, it can be interpreted as the phase-dependent sensitivity of
¢, and so Q(¢,1) = Vx|, - P(t) measures the influence of the perturbation on the phase.

Defining the phase difference between p(t) and ¢ as ¥ = ¢ — (T//T,)t and letting eA =

1 —T/T,, we obtain to second order in €
, T
U = e[A 4 Q=1 + ¥, 1)) (1)
Ty
Averaging this equation over one period of the drive gives
V' = €[A+ (V)] (2)
where the function I'(¥) is the average

D) = (1/T5) /0 TdQ(Tzdt—i— U, t)dt. 3)

If this equation has a stable fixed point ¥y, then the phase ¢ approaches the solution
o(t) = o+ (T/Ty)t, so that ¢(t + Ty) = ¢(t) and the system is phase locked with the drive
with a phase difference of Wy.

To extend these ideas to the case of chaotic systems we assume that X' = F(X) possesses
a chaotic attractor A and that there exist coordinates (R, ¢) in a neighborhood of A such

that



R'=F(R,¢) (4)

¢ =1+6(R,0) ()

where ¢ is T-periodic. We require that 6(R, ¢) is O(n) where n < 1 except possibly
for ¢ in a set of total length O(n) on which §(R, @) can be O(1), or, equivalently, that
fOT (R, ¢p)dp = O(n) for any orbit on A. It follows that ¢ completes one period in time
T + O(n). Moreover, two points (R, ¢) and (Rs, ¢) sharing the same initial phase will
remain close in phase for times at least O(1/n) before they are separated by the effects of
the term §. Therefore the level sets of ¢ form approximate isochrons and the system may
be called phase-coherent [22].

It is not always clear when such a change of coordinates exists. However, given a system
of differential equations, or a timeseries it is frequently possible to define a phase ® and a
natural period 7" such that |®(7T) — ®(0)] < n < 1. This can be done using the Hilbert
transform, or other approaches [23-25]. In the Appendix we show that if in addition & is
strictly increasing, then there exists a change of coordinates for which equations (4-5) hold.

The dispersion of the phase due to the term ¢ is frequently referred to as phase diffusion
since the effect is similar to that of a random perturbation to a periodically forced phase
oscillator [12]. Let us emphasize, that § does not necessarily behave like é-function correlated
white noise. The correlation (6(t),d(t + 7))); may, in general, decay relatively slowly with
7, and thus the theory developed in [12] is not necessarily valid for CPS. In the following we
investigate phase synchronization when ¢ is small in the sense described above. In particular,
it is not necessary that the system is chaotic, as long as there are coordinates in which the
system is given by equations (4-5). The coordinates (R, ¢) are not uniquely defined but
may be chosen in any way such that ¢ satisfies the conditions given above.

As in the periodic case, we want to predict the response of the phase to a small periodic
perturbation by analyzing the system X' = F(X)+ep(t). We assume that the original system
is stable to small perturbations in the sense that the perturbed system has an attractor A,

which is close to the attractor of the unperturbed system in the sense that a typical orbit



on A has a counterpart on A, and the two stay close over one oscillation. In particular, we
do not assume that the dynamics on the two attractors is conjugate as, for instance, one of
A, and A could be a chaotic and the other a periodic attractor.

Since §(R, ¢) is continuous in both arguments, it will remain small when evaluated along

an orbit of the new attractor A.. The same calculations as in the periodic case yield

¢ =1+0(R, )+ eVxo|mg)  P(t) (6)

where Vx¢|(r,¢) is the gradient of ¢(X) at a point (R, ¢).

We will assume that Vx¢|r,e) satisfies Vx¢|r,,9) = Vxd|®a,0) + Ol€) for all pairs of
points (Ry, ), (Ra, ¢) in a neighborhood of A so that the phase dependent sensitivity is
constant as a function of R up to terms of order e. This is a strong assumption which is
approximately satisfied for the systems described in sections IIT and IV, and whose necessity
will be discussed further in Section V.

Using the same definitions as in the periodic case, we now find up to second order in e:

W=4A+m%+Wﬁhwm@) (7)

Again, we proceed by averaging the term in the brackets of (7). Following the usual

proof of the Averaging Theorem [26] we introduce the near identity transformation

U =T+ eu(P,1)

where u(¥,t) = Q(,t) — () and T'(¥) is defined as in equation (2). It follows that up to

second order in €
U = e[A+T(9)] +6(R, ¢) (8)

where (R, ¢) = 6(R, ¢) —ed(R, ¢)dgu (¥, t). If § is small for all values of ¢ then equation (8)
is of form (2), with a small perturbation § whose exact nature depends on the driven system.
Since both ¥ and ¥ and § and 4 are uniformly close, we will drop the tildes from now

on. Define the region



w {¥ : min § < A +T'(¥)] < max d}.

For e sufficiently large, W is a proper subset of [0, Ty]. If ¥y is a stable fixed point of equation
(2) and W the component of W containing ¥, a Lyapunov function argument shows that
W is a stable inflowing region for (8). This is shown schematically in Fig. 1.

A similar argument holds if §(R, ¢) is of O(1) during a time of O(n) in the cycle. If
n = O(e) then for any initial relative phase ¥(0) in (8) we have ¥(¢) = ¥(0) + O(e) for
0 <t < T, Therefore during one period of the drive I'(¥(¢)) = I['(¥(0)) + O(e) and ¥

advances by
U (Tq) — ¥(0) = 6/0 d[F(\I’(O)) + (R, ¢)]dt + O(?), (9)

and for sufficiently large € points starting in the basin of attraction of a stable fixed point
U, of (2) are still attracted to the vicinity of ¥, in equation (8).

Note that in obtaining (8) we have only averaged the periodic term €2, but not §. Alter-
natively we can also average d(R, ¢) over a time nT; < 1/¢ to obtain ' = ¢[A+T'(¥) +5(t)]
up to second order in e where §(t) = 1/(nTy) [T *[6(R(t), ¢(t))]dt. Since §(R, ¢) is not pe-
riodic in time, the solution of this equation will in general be a good approximation to the
unaveraged solution only for times up to order 1/e [27], while the approach outlined above
gives results valid for all time, however we can still recover the conclusions of the above ar-
gument as follows. Suppose that we replace § by d in (8) and there exists a trapping region
W for the phase difference . Then any solution of the unaveraged equation starting in W
will stay in this wedge for times up to O(1/€). Therefore we can string together infinitely
many intervals over which this solution is valid to show that W is a trapping region of the
unaveraged equation for all time. Although the solutions of the averaged and unaveraged
equations may not remain close, we can still conclude that both will remain trapped around
¥, for all time. It is therefore a matter of convenience whether we choose to average 6(R, ¢)
or not. Since averaging 0(R, ¢) is justified, average quantities such as the phase diffusion
constant are meaningful in estimating the size of § even when ¢ is different from white noise,

as long as the average is approached quickly compared to 1/e.
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For periodic systems the transition to phase locking occurs as follows: As e increases,
the graph of €[A + I'(¥)] is dilated vertically(see Fig. 1) . System (2) nears a saddle-node
bifurcation and ¥ spends more time in the vicinity of the incipient bifurcation point. At a
critical value of €, equation (2) undergoes a saddle-node bifurcation, giving birth to a stable
fixed point ¥,. At this point the system enters the 1 : 1 Arnold tongue and phase locks to
the drive. The transition to CPS in the perturbed system (7) is similar, but more gradual.
Even as the saddle-node bifurcation gives rise to a stable point ¥y of (2), the term § in (7)
may cause the phase to slip out of a neighborhood of ¥,. If T, > T, then eA > 0 and
the graph of I'(¥) is shifted upwards. In this case § typically causes a forward slip in the
phase. If T, < T, the opposite is true. As e grows, these slips become rarer and disappear
altogether with the creation of a trapping region W for the phase. If max § and min § remain
approximately constant as € is increased, then the region W moves and becomes narrower,
and so phase locking typically becomes tighter. This process is illustrated in Sections III
and IV, and in Fig. 2.

It will be shown in Section V that it is frequently important to assume that Vx¢|gr,g¢) is
approximately constant in R. We also note that the existence of the region W is a sufficient,
but not necessary condition for CPS. The attraction to an approximately phase locked state
may become stronger than the phase diffusion even before the coupling is sufficiently strong
for the region W to appear. This depends on the particular form of the term ¢, and without
further assumptions it is difficult to say more.

The term §(R, ¢) is a deterministic noise term. More information about this term leads
to additional information about the phase locked state. In [24,28] it is argued that § can
typically be approximated by fractional Brownian motion. Intermittent spikes in § may
lead to intermittent phase slips [29]. Statistical information about such spikes yields direct
information about the frequency of phase slips in such systems [30]. Note that we have only
assumed that ¢ is small and not that it is modeled well by any particular stochastic process.

In this argument it was assumed that the periodic driving has only a small effect on the

attractor A and that e is small enough to justify averaging. However, € needs to be sufficiently



large for a phase trapping region W to appear. These two opposing conditions on € may
not always be compatible. It is therefore necessary to treat phase-coherent attractors case
by case. Fortunately perturbation results often hold for a wide range of values of ¢, and we

therefore expect that these ideas are widely applicable.

III. THE ROSSLER SYSTEM

In this Section we consider the Rdssler system with a periodic drive in the x variable [31]

' = —wy — z + esinwgt

Y =x+by (10)

2’ =0.2+ z(z — 10).

with b = 0.12. Introducing cylindrical coordinates r = /22 + y2, § = arctany/z and z we

obtain the following equations:

zsinf b

0,:1+ +§S1n20

r

' = —zcosf + brsin®f

The right hand side of the phase equation contains two terms that cause its velocity to
deviate from constant: S(t) = zsinf/r and (b/2)sin26. Since the second term is periodic
in # and does not depend on z and r its contributions in the following calculations are
orders of magnitude smaller than those of the first term, and we do not consider it further.
The variable z(t) is close to zero, except for a sequence of spikes that always occur near
0 = 0" ~ 0.22 x 7. During these spikes the phase velocity increases causing phase jumps
and an increase in the average angular frequency to w = 1.0329.

As explained in the previous section, we would like to define a new phase coordinate ¢
in a neighborhood of the attractor such that ¢’ = 14 §(¢) where §(¢) is small on average and
has zero mean. To do this we model S(¢) by a sequence of constant pulses 7 () around the

phase value § = 0* which are defined as 7(0) = M if a < 6 < 8 and is 7(f) = 0 otherwise. We



choose the values a = 0.187, 8 = 0.287, and A = 1.74 so that the period of a phase variable
with phase velocity 1+ 7() is the average period of the Réssler system 7' = 1/w = 6.0838.

The new phase is now defined by ¢' = ¢'/(1 + 7(#)) and ¢(0) = 6(0) = 0, so that ¢ is
periodic with period 27 + (o — S)A/(A+ 1) = T and satisfies

1+ zsin (o)
r(1+m(0(¢)))

where 0(r, z, ¢) has zero mean and is large during only a small fraction of each cycle.

¢ =

=144(r,2¢)

The phase perturbation term €2 is

1
r(l+m(6(4)))

and the function I'(¥) is computed by averaging Q(wgt/w,t), as in equation (3). The exact

Qo t) = — sin (@) sin wgqt

result is complicated, but I'(V) ~ —cos(¥)/2r is a good approximation. Since r is not
constant we use its average value in the approximations below. Details of the calculation
may be found at the author’s web site [32].

The value of € necessary to phase lock the system when wy; = w is less than 0.001.
Since this value is an order of magnitude smaller than the coupling values considered below
phase diffusion has a negligible effect in this case. We also estimate 6(r, z,#) by noting
that ¢(nT) — ¢(0) = fnT (r,2,4). Thus the average & can be estimated from computing
(¢(nT) — ¢(0))/(nT) over many orbits. The maximum value of § with n = 1000 is of order
10~* and it therefore has no significant influence. The phase diffusion coefficient computed
as in [4,16] equals Dy = 8.28 x 10 °.

Interestingly d(r, z, ¢) is relatively large over most oscillations. However computing the
average of & over one oscillation §(t) = 1/T fo 1, 2, ¢)dt we find that 6(nT) and §((n+1)T)
are strongly negatively correlated. Thus most forward jumps in ¢ are followed by a backward
jump which leads to the small value of the phase diffusion. Since we can use averages to
estimate the influence of ¢ it follows that it has a negligible influence despite its large values
during each oscillation.

The Arnold tongue is computed by finding the minimal values of the coupling strength

€min at which phase locking occurs for a given value of eA = 1 — wy/w . In particular
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we find the value ¥, at which I'(¥) reaches its maximum if 1 — wz/w < 0, or minimum if
1 — wg/w > 0 so that €y;, can be found from (8) as

wgfw —1
€ 9= Y= =
min P(\I’())

where we have neglected the term §. The value of ¥ gives the phase difference at which the
phase locking first occurs. The results of this approximation are compared with data from
numerical simulations in Figure 3. We also find that ¥y &~ —7 when eA > 0 and ¥y ~ 7
when eA < 0 which also agrees well with the numerical simulations. We have also repeated
the analysis with different types of periodic driving in equation (10) and again obtained
good agreement between theory and numerical simulations.

It is interesting to note that our predictions overestimate the value of € at which phase
locking first occurs by about 10%. This is in part due to the use of the average value
of r in T'(¥) ~ —cos(¥)/2r which makes our approximation of I'(¥) independent of r.
The dynamics of r, which are ignored in this approximation, may play an important role
in determining phase locking as demonstrated in Section V. A more careful analysis can

improve these predictions, but is beyond the scope of this paper.

IV. APPLICATION TO EXPERIMENTS

To experimentally confirm the analysis above, we constructed a phase-coherent chaotic

electronic circuit modeled by the following equations
¥ =—a(z/20 + y/2 + 2)
Yy = —a(—z —yy) + esinwy (11)
7= —a[-15(z — 3)0(z — 3) + 2],
where 0(z) is the step-function and o = 10* sets the experimental time scale. System (11)
can be viewed as a piecewise linear approximation of the Rossler system discussed in the

previous section. It has been used in previous studies of chaotic synchronization [33]. For

experimental circuit details, see [34].
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The phase space of (11) is divided into two regions, Ry = {(z,y,2) € R® : z < 3}
and Ry = R® — Ry, in each of which the equations are linear. By changing coordinates
so that the system is in normal form in R;, the solutions of (11) in R; have the form
(w(t), z(t)) = e w(0) 4+ e~*2(0) where w(t) = x(t) +iy(t). In R, the solutions approach
the xy plane, which is invariant. If v > 0.05, then v > 0 and the origin is a spiral source in
the zy plane. The parameter v controls the instability of the origin since v increases with
increasing 7.

When an orbit enters Ry, it is lifted off the xy plane. Shortly thereafter, the orbit is
reinjected into R; closer to the z axis, it quickly approaches the zy plane and, if v > 0,
spirals outwards until it re-enters R, and the process repeats. It can be shown that this
behavior results in a Poincaré return map similar to the Hénon map [35].

We now define a phase coordinate as

¢ = (wr) 'arctan(y/z) (12)

where 7 is the average attractor radius, which depends on v. It follows that in R; the sets
I. = {¢: ¢ = ¢} form an invariant family, ¢' = 1, and Vx¢ is constant on each I.. These
observations permit a straightforward calculation of I'(¥) as in the previous section. Since all
orbits eventually enter the region Rs, this description of the phase is incomplete. However,
the size of the errors in this approximation depends directly on the size and frequency of the
excursions into the region Ry. These in turn depend on v, which can be directly controlled
in experiments via the parameter v, which has a similar effect on the dynamics as the
parameter b in the Rossler system. This allows us to adjust the magnitude of ¢ in (8).
Numerical and physical experiments were conducted by changing the magnitude of the
driving term esin(wgt) in (11). Using (12) and the ideas of Section II, in normal coordinates

we obtain
['(¥) = 0.021 cos(w¥) — 0.1666 sin(w ) (13)

for v = 0.127 and r = 5.12. Returning to the original coordinates of system (11), we see that

if the frequency of the drive wy is larger than the intrinsic frequency of the circuit wq [36], i.e.
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T; < T and €A < 0, we expect that the circuit first locks to the drive with a phase difference
U =~ —7/2 and that ¥ moves towards 0 as € is increased. Similarly, if wy < wy we expect that
initially ¥ ~ /2, and ¥ moves towards 0 as € is increased. The theoretical analysis above
yields good qualitative (Figs. 2 and 4) and quantitative agreement with the experimental
data in the location, size, and shape of the phase-locked region (Fig. 4) indicating that the
approximations in the phase descriptions were appropriate. We repeated the analysis with
different types of driving and obtained similar agreement between theoretical prediction and
experimental results.

Note that the analytical predictions again overestimate the size of the coupling strength
€ necessary for phase locking, as in the previous case. This is not surprising as the dynamics
of systems (11) and (10) are similar. Within the Arnold tongue, the circuit oscillates chaot-
ically, but remains phase locked to the drive [37]. For large ¢, the drive may be so strong
that it imposes periodic dynamics on the circuit [38]. This occurs at the top of Fig. 4(b).

We plot only the points for the region of CPS beneath this.

V. DEPENDENCE OF THE PHASE SENSITIVITY OF ¢ ON R

One of the main assumptions in Section II was that Vx¢|r,e) is approximately inde-
pendent of R. This assumption implies that the first two terms in (7) are independent of R
and the calculations can proceed in a way similar to the periodic case.

This assumption is not necessarily satisfied. If the attractor A is chaotic, the section
AN{¢ = c} where ¢ € [0,T) necessarily consists of infinitely many points. It is possible that
Vx¢ varies by a large amount on each such section even if §(R, @) is small. To illustrate
how this may happen we first present a transparent, although artificial example, and use a
similar idea to construct a modification of the Rossler equations exhibiting a phase-coherent
attractor which is difficult to phase lock.

Consider a planar vector field given in polar coordinates by X(r,¢) = (0,1/r) in the

annulus 7 € [1,2],¢ € [0,27]. The isochrons are radial lines and the phase sensitivity
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Vx¢

a unimodal function with a peak at 2(r — 1)7 and rapidly decaying to 1 away from this peak.

(rg) = (— cos ¢, sin ¢) is independent of r. Let Y = S(r, #)X where S: R x S' — R is

The phase velocity of this system will be maximal at the angle (r — 1)¢ for the circular orbit
at distance r from the origin and so Vy¢ depends on r. Applying the theory in Section II
formally we see that symmetry implies that if the periodic orbit at » = 1 is phase locked to
a periodic drive with a phase difference ¥, then the periodic orbit of radius r will phase
lock to the same drive with a phase difference Wy &+ 27(r — 1). Consider now an attracting
orbit whose radius varies slowly between 1 and 2 and such that its phase velocity at each
point is the same as that of Y. Using the adiabatic approximation as in [39] we find that at
each moment this orbit will be locked to the drive, although the phase difference between
the two will vary between 0 and 27. Although this example is artificial, it demonstrates
that the dependence of Vx¢ on R may be an intrinsic feature of a system with a significant
influence on its phase locking characteristics.

To show what consequences this dependence may have on phase locking let D(R, ¢) =
Vx®|r,e) and let D(R, ¢) = Da(¢) + Dy (R, ¢). Here Ds(o) is the R-independent part of
D(R, ¢), which can be obtained by averaging D over the attractor. The exact way of how

D 4(¢) is obtained is unimportant for the following argument. From (6) it follows that
U' = €[A+Da(¢) p(t)] + eDv(R,9) - p(t) + 0(R, ¢)

where now the term eDy (R, ¢) - p(?) is no longer assumed to be small compared to the term
in the brackets. In particular, Dy (R, ¢) varies by the same amount as D(R, ¢) as a function
of R regardless of the choice of D(¢). The approximate effect of this term on the phase

over one oscillation can be calculated as in (9)

W) - v0) =< [ DyR, %t +0) - p(t)dt (14)

As the effect of the term eDy (R, ¢) - p(t) increases with an increase in coupling strength

it will not be necessarily possible to overcome it simply by increasing the coupling strength

as in Section II. In particular, if Dy varies by a large amount from oscillation to oscillation
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or does not change sign, it is possible that it will prevent phase locking completely, regardless
of the strength of the coupling. On the other hand, it is also possible that the average of
eDy (R, ¢) - p(t) over a longer time interval nTy, is small so that Dy has little effect on
the phase difference and thus the arguments of Section II still apply. This is the case in
Sections III and IV. However, without more detailed information about the term Dy (R, ¢)
it is not possible to reach any of these conclusions even if 6(R, ¢) is small and the system is
phase-coherent.

We illustrate this point using a modification of the Rossler equations in their polar form

(11) with b= 0.14. The equation for # is modified as follows:

zsinf b

0 = (w+ +3 sin 26)g(r, 0) + esin wgt (15)

T

where the term esinwyt is a periodic drive and
g(r,0) =1 — sN (c(r — a)m + 6o, 0%)

where N (i, 0?) = exp[—(z — u)?/(20%)] is an unnormalized Gaussian-like function with
a narrow peak p whose width is determined by o?. The parameter o = 7 is set to the
approximate inner radius of the z — y projection of the Rossler attractor. In the simulations
we have chosen 0y = 0.77,c=7/24,s = 0.5.

The effect of the term g(r, ) is to slow down the phase variable # whenever it is close
to ¢(r — a)m + 0y. This slowing down occurs at different values of 6 for different values of
r, as in the illustrative example above. For our choice of parameters, the slowdown occurs
between = 0.77 for an orbit at the inner edge of the attractor and § = 1.127 for an orbit
at the outer edge of the attractor.

This modification of the Rossler equations is reminiscent of the one introduced in [16]
with one crucial difference. The present change of coordinates increases the dependence
of the phase dependent sensitivity Vx6f on r without significantly altering the amount of
phase diffusion. By contrast, in [16] the Rdssler equations were modified so as to increase

the amount of phase diffusion significantly. Figure 2 in [16] illustrates that increasing phase
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diffusion makes phase synchronization more difficult. We illustrate that the same is true in
the present case.

Since this modification does increases the phase diffusion of system (10) slightly, and
our goal is to compare synchronization properties of systems with similar amounts of phase
diffusion, we use the unmodified Rossler system with b = 0.16 for comparison. The phase
diffusion coefficient can be estimated as the slope of the variance {(#(n) — (¢(n)))?) [16,4].
The results are given in Fig. 5 and show that the slope of the variance as a function of the
number of cycles is 2.04 x 1072 in the first and 2.37 x 10~ in the second case. We also
compare the variance of 0((n+1)7) —6(nT), where T is the average period of oscillation and
find a variance of 0.210 in the first and 0.303 in the second case. Thus the phase diffusion
is stronger in the unmodified Rossler system with b = 0.16.

Despite the fact that the phase diffusion is smaller for the modified Rossler system, it
is more difficult to phase lock, as shown in Figure 6. Moreover, unlike the regular Rossler
equations, infrequent phase slips can still be observed for very strong coupling values.

Lastly we demonstrate that the precision of the synchronization is very different in the
two cases. As argued in Section II, an increase in the coupling strength will lead to a decrease
in the size of the synchronization wedge W if the term Dy (R, ¢) does not play a significant
role. Since the size of W determines the amount by which the phase difference |¢ — ¢4
between the drive and response varies, we expect tighter phase locking with an increase in
¢ (see Fig. 2). However, if Dy (R, ¢) cannot be ignored its the influence increases with the
coupling strength €, so that the set W may not shrink, or may even become larger. This
is demonstrated in Fig. 7 in which the standard deviation of #(nT,) in the phase locking
region are compared. The results show that the difference |¢ — ¢,4| stays large regardless of
the value of € in the case of the modified Rossler equations. Repeating the simulations with
different parameter values and different types of periodic drives yields similar results.

This observation has significant consequences. In systems in which the term Dy (R, ¢) is
significant, phase locking may occur for sufficiently strong coupling values, however the phase

difference between the drive and response may still vary significantly. Moreover, an increase
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in the coupling strength may not decrease the variation in the phase difference. Since the
phase difference may vary by a large amount, phase synchronization may be impossible to
detect in such systems. This type of phase synchronization may also not be adequate in

systems in which precise timing is necessary, such as neural systems.

VI. CONCLUSION

Among different types of chaotic synchronization [41,42], CPS is of particular interest
since it occurs at coupling strengths that are considerably smaller than those necessary
for complete synchronization. Because the phase corresponds to a nearly neutral direction
within the attractor, under certain conditions only a small driving force is required to control
and entrain it. The dynamics in the radial directions can be far more unstable and therefore
more difficult to control and synchronize. Chaotic phase-coherent systems can exhibit a
richness of behavior while their phase dynamics is still relatively tame, a property with
important implications for biological and other systems [6].

We have shown that the ideas used to study phase locking of periodic oscillators can
be extended directly and naturally to the chaotic case. This approach provides a way
of predicting how a phase-coherent system will phase lock to a periodic driving signal.
Systems (10) and (11) were used as illustrative examples because they are most commonly
encountered in the literature on CPS, and the change of coordinates necessary to compute
['(¥) can be found in a straightforward manner. In the Appendix we show that the change
of coordinates required in Section II exists for most phase-coherent systems. Therefore these
ideas can be applied in more generally, although it may be necessary to employ numerical
estimates to find an optimal coordinate change. In particular, systems for which several
phase variables can be defined may be also considered using the same techniques [24].

The main difference between CPS and phase locking in periodic systems is that the
phase sensitivity cannot be assumed to be a function of the phase only. The stronger

the dependence on other variables, the less the system will behave like a periodic system
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when driven by a periodic signal. As shown in Section V this means that it may not
be possible to synchronize some phase-coherent systems, even if they exhibit very small
phase diffusion. Moreover, even if phase synchronization is possible, in such cases the phase
difference between the drive and response may vary by an arbitrary amount regardless of
the amplitude of the drive.

Let us also note that this view of chaotic synchronization is related to the analysis of
randomly or chaotically driven periodic oscillators [39,43]. We may think of the term 6(R, ¢)
as arising from the chaotic or random part of a signal acting on a periodic oscillator since
the two situations are equivalent from a mathematical perspective. In cases where 6(R, ¢)
varies slowly compared to ¢, the adiabatic approximations used in [39] still apply. Following
the arguments given in [20] it is also straightforward to extend this approach to the case of
coupled chaotic systems. This case will be examined further elsewhere.

In view of these arguments, we expect that our approach has applications beyond CPS.
If there exists a change of coordinates in the neighborhood of a chaotic attractor such that
in these coordinates certain directions are nearly neutral, we expect the system to be more
malleable along these directions. Thus some coordinates may be easier to synchronize than
others and partial synchrony of such variables may be achieved before full synchronization
of the system occurs.

We thank C.E. Wayne and M.K. Stephen Yeung for useful discussions.

APPENDIX A: THE R, COORDINATE CHANGE
We provide sufficient conditions for the existence of coordinates R and ¢ in which the
equations of motion take the form (4-5).

Theorem 1 Let the system X' = f(X) have a compact attractor A on which a T-periodic
phase coordinate ® is defined, and assume that f is differentiable. Moreover, assume that

the return time Tr, to the section ® = 0 of any point (R, ®) = (Ry,0) on A satisfies
T —Tr,| <n < 1 (A1)
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and that ® > 0. Then for any € > 0 there exist a coordinate change ® — ¢ in a neighborhood

of A such that ¢ is T-periodic and
¢ =1+6(R, )
where |d| < n+ €, except for ¢ in a set of measure less than 1.

Note that the different approaches for defining the phase of a chaotic system [4,24,25] all
result in a phase that is increasing in time. Theorem A1 states that there exists a change
of coordinates to ¢ for any such phase, and thus, up to discrepancies of size at most 7, all
these definitions are equivalent, as long as there are no resonant modes.

Before we give an outline of the proof it is instructive to consider the case of a system

with a limit cycle with period 7. We can always define a phase ® that satisfies
o' =1+ D(P)

where ® is T-periodic and D(®) > —1 and fOT D(®)d® = 0. We can introduce a new phase

coordinate

_ *_Ds)
S A S IOk

where ¢ is also T-periodic. A direct computation shows that ¢’ = 1. This change of
coordinates stretches the parts in which the phase moves quickly and compresses the parts
where it moves slowly, so that its motion becomes uniform.

The proof of the general case follows the same idea. Due to (A1) and the assumption

that ® > 0 we can write & =1+ D(R, ®) where D(R,®) < 1 and

/ " DR(®), B(t)dt < 1 (A2)

along any orbit in a neighborhood of A. Moreover, we can express the R(¢) part of a solution
with initial condition (R(0), ®(0)) = (Ro,0) as a function of ®, i.e. we can define R(®, Ry)
uniquely for ® € [0,7) and Ry in a neighborhood of AN {® = 0}.
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For any orbit in a neighborhood of A the function D(R(®,Ry),®) = D(Ry, ®) can be
approximated by (Ro,é) so that fo Ro, ®) d® = 0 and if Ry is the R coordinate
of the first return to the section ® = 0 of the orbit starting at (Rg,0) then D satisfies
D(Ro,T) = D(R4,0) and is differentiable at (Ro,7) = (Ry,0). Due to (A2) for any given
€ > 0 we can also choose D to satisfy

1+ DRy, ?)

R <n+e A3
1+ D(Ry, D) 7 (A3)

‘D(Ro,tb) — D(Ry, @)

for all ® € [0, T) outside of a set of measure 7. Furthermore, by differentiable dependence on
initial conditions, the function D can be chosen to be differentiable. We can now introduce
a new coordinate

o= — ’ Mds

o 14+ D(Ry,s)

By our choice of D this is a smooth change of coordinates and ¢' =1+ & (R, ®) where ¢ is
the quantity on the left side of inequality (A3). This proves the assertion.

There are several important properties of this change of coordinates. First, note that it
is performed along every period of ®. In particular, the value of ng, = |7 — TR, | determines
the size of §(R, ®) along one period of ® for the orbit starting at (Rg,0). Therefore, the
distribution of nr, is a good indication of how §(R, ®) behaves over many orbits.

It is also worth noting that if ® = O(1) in a neighborhood of A then condition (A1) is

equivalent to the existence of a time T such that
|®(0) — ®(T)| < Kn

for K = O(1) and all orbits in a neighborhood of A. Thus it is a matter of choice whether
to look at the space or time Poincaré section to determine whether the attractor is phase-
coherent.

The choice of the approximating function f)(RO,T) is also somewhat arbitrary. For
instance it is possible to choose D(Rg, ®) = D(Ry, ®) for all ® outside of a set of small

measure. On the other hand we can choose the functions so that D(Rg, ®) — D(Rg, ®) # 0
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but remains small along the entire orbit. As discussed in Section II this does not have any
significant consequences if we only consider the coarse behavior, but a particular change of
coordinates might be preferred if a more detailed study is required.

Lastly, let us remark even if the described change of coordinates exists only on part of the
attractor, some of the ideas developed in this paper may still be applicable. If the attractor
contains a fixed point, as for instance the Lorenz attractor, then condition (A1) cannot be
satisfied and a change of coordinates of the type discussed above does not exist. However,
it is possible to find such a coordinate change along orbits or portions of orbits that stay
uniformly bounded away from the fixed point, which may lead to partial phase coherence

and phase locking as in [29].
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FIGURES

¥ = e[A+T(P)]

FIG. 1. Schematic representation of Eq. (8) for ¥’. Once in the interval W, the relative phase
U cannot escape. The value of ¥ estimates the phase difference between the drive and the system

response, and the size of W estimates the variation in this difference.
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(b)

(© (d)

FIG. 2. Numerical simulations of system (11) for v = 0.10, driven in y using esin(wgt) with
wqg = 0.711. In (a)-(d), e = 0.002, 0.005, 0.02, 0.05 and the region plotted in each panel is given
by —4.3 <z < 4.3 and —5.8 < y < 5.1. The dark points show the Poincaré section at zero drive
phase. For ¢ = 0 (data not shown), the points are distributed relatively evenly over the attractor.
In (a), € is small and the points become concentrated near ¥ = —m/2, but frequent phase slip
events are still evident. As e increases, these events become less frequent and eventually a phase
locking region appears (b). For still larger €, the region moves towards ¥ = 0 (c) and becomes
narrower (d). For larger v (data not shown), d is larger and the trapping region is correspondingly
broader. When the drive is applied to the z variable (data not shown), ¥ ~ —x at the threshold

of locking, and ¥ approaches —/2 for large e.
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FIG. 3. The 1:1 Arnold tongue for the Rossler equations. The values € and €A are plotted on
the vertical and horizontal axis respectively. The lines represent the theoretical prediction, while

the dots are obtained from numerical simulations.
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FIG. 4. CPS phase locking results from experiment (symbols) and theoretical analysis (lines)
for system (11) for v = 0.127 (a) and v = 0.161 (b). The system is periodically driven in y with
frequency and amplitude as shown on the axes. The average frequencies of the undriven system are
1122 Hz and 1113 Hz, corresponding to wy = 0.705 and 0.699, in (a) and (b). Triangles indicate
when the system lies just at the threshold of slipping, while squares indicate parameters for which
ly| = |z| and ¥ ~ +7/4, as indicated at the top of (a). The wedge-shaped regions are analogous to
Arnold tongues in the periodic case. The lines are calculated from I'(¥) and (2). Insets: T'(¥) vs

U, as obtained from (13) for (a). For (b) the coefficients of the terms in (13) are 0.025 and -0.1666.
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FIG. 5. The time evolution of the variance ((¢(n)— (¢(n)))?). The upper and lower line
corresponds to the unmodified Rossler system with b = 0.16 (slope of best linear fit 2.37 x 1073),

and the modified Rossler system with b = 0.14 (slope of best linear fit 2.04 x 10~ 3) respectively.
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FIG. 6. The solid and open dots form the boundaries of the 1:1 Arnold tongues for the modified

Rossler system with b = 0.14 and the unmodified Rossler system with b = 0.16 respectively.
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FIG. 7. The variance of the distribution §(n7y) in the region of phase locking for w = wy.
The rectangles and open dots represent data from the unmodified and modified Rossler system
respectively. The stronger dependence of the phase dependent sensitivity on R in the case of the

modified Rossler system leads to less precise phase locking at all coupling values.
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