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Abstract Dendrites form the major components of neu-
rons. They are complex branching structures that receive and
process thousands of synaptic inputs from other neurons. It
is well known that dendritic morphology plays an important
role in the function of dendrites. Another important contribu-
tion to the response characteristics of a single neuron comes
from the intrinsic resonant properties of dendritic membrane.
In this paper we combine the effects of dendritic branching
and resonant membrane dynamics by generalising the “sum-
over-trips” approach (Abbott et al. in Biol Cybernetics 66,
49–60 1991). To illustrate how this formalism can shed light
on the role of architecture and resonances in determining neu-
ronal output we consider dual recording and reconstruction
data from a rat CA1 hippocampal pyramidal cell. Specifically
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1 Introduction

The dendrites of neurons often exhibit elaborate branching
structures, as so wonderfully described in the book Dendrites
(Stuart et al. 1999). These branching projections act to trans-
fer electrical activity between synapses and the soma. Indeed
the electrical and branching properties of dendrites are known
to play a critical role in integrating synaptic inputs and in
determining whether action potentials are generated at either
the soma or other hot spots within the dendritic tree (Mainen
and Sejnowski 1996; van Ooyen et al. 2002). Much insight
into the contribution of the electrical properties of dendrites
to neuronal function has come from theoretical work first
developed by Rall. In this regard Rall’s work on dendritic
modelling is one of the more obvious success stories in the
field of mathematical neuroscience. For a historical perspec-
tive on Rall’s contributions in this area we refer the reader to
the book by Segev et al. (1995), and for a review of many of
the mathematical techniques still being used today we recom-
mend Tuckwell’s (1988) book. Although much of the more
recent work on dendritic modelling has tended to focus on
the dynamics of nonlinear voltage-gated ion conductances,
reviewed in (Segev and London 2000), it is important to
recognise that the passive properties of the dendritic tree pro-
vide the fundamental substrate for dendritic dynamics, as em-
phasised in the recent review article of London and Häusser
(2005). In fact it would be fair to extend the statement that

123



Biol Cybern

passive electrical properties form the backbone of neuronal
computation to also include the resonant properties of den-
dritic membrane. Many neurons exhibit resonances whereby
subthreshold oscillatory behaviour is amplified for inputs at
preferential frequencies. One illustrative example is that of
hair cells from the sacculi of frogs, which are seismic recep-
tors sensitive in the frequency range of 10–150 Hz. For these
cells the ionic mechanism underlying resonance is known
to involve both a Ca2+ and a Ca2+-activated K+ current
(Hudspeth and Lewis 1988). From a mathematical perspec-
tive Mauro et al. (1970) have shown that a linearisation of
such channel kinetics, about rest, may adequately describe
the observed resonant dynamics. In the terminology of elec-
trical engineering the resulting linear system has a membrane
impedance that displays resonant-like behaviour due to the
additional presence of inductances. This extends the more
usual ‘RC’ circuit description of passive membrane to the
so-called quasi-active or ‘LRC’ case. Further work by Koch
and Poggio (2005) showed how the response function for an
arbitrary branched dendritic tree with quasi-active membrane
could be calculated in the Laplace (frequency) domain. This
approach generalised the original graphical calculus of Butz
and Cowan (1974), valid for passive dendritic geometries.
Later work by Abbott et al. (1991) showed how to calcu-
late response functions for passive branched dendritic trees
directly in the time-domain. The machinery to do this bor-
rows heavily from the path-integral formalism for describing
Brownian motion, and was used to give simple diagrammatic
rules for obtaining the Green’s function for a passive tree
(Abbott 1992). For a discussion of the computational advan-
tages of this approach see Cao and Abbott (1993). As noted
in (Abbott et al. 1991) the path integral approach relies on the
superposition principle and so should also be applicable to
quasi-active membranes, since these are described by linear
equations. It is precisely this problem that we address and
solve in this paper. We present our results in the “sum-over-
trips” language of Abbott et al. (1991) and show how their
rules for constructing the Green’s function for a branched
tree must be modified to account for resonant membrane.

In Sect. 2 we briefly review the formalism describing
quasi-active membranes, along the lines described in (Koch
1984). Next in Sect. 3 we develop a “sum-over-trips” formal-
ism that can cope with quasi-active dendritic trees of arbi-
trary geometry. Not only does this extend the original work
of Abbott et al. (1991), it further allows for the treatment of
dendritic sub-units connected to a soma as well as allowing
for differing cell membrane properties on each dendritic seg-
ment. Using a reconstructed cell and dual recording data we
show, in Sect. 4, that this work is directly relevant to under-
standing the dynamics of real neurons. Specifically we treat
resonances associated with Ih and show how they contrib-
ute to a voltage overshoot at the soma. Finally in Sect. 5 we
discuss natural extensions of the work in this paper.

2 Unbranched resonant dendrite

Here we review the theory of quasi-active membrane and
show how it may be interpreted in the language of ‘LRC’
circuits, i.e. circuits with a resistor, capacitor and inductance
in parallel. To start with consider a generic ionic membrane
current of the form

I = I (V, w1, . . . wN ), (1)

where V is a voltage and the wk are gating variables that
satisfy

τk(V )ẇk = wk,∞(V ) − wk, k = 1, . . . , N . (2)

It is traditional to write τk(V ) = (αk(V )+βk(V ))−1, where
wk,∞(V ) = αk(V )τk(V ). Now consider variations around
some fixed point (V, w1, . . . wN ) = (Vss, w1,∞(Vss), . . . ,

wN ,∞(Vss)), so that

δ I = δV

R
+

N∑

k=1

∂ I

∂wk

∣∣∣∣
ss

δwk, (3)

where we introduce the resistance R defined by R−1 =
∂ I/∂V |ss, and the subscript ss denotes that quantities are
evaluated at steady state. Using (2) we can write the evolu-
tion of the perturbations in the gating variable as
(

d

dt
+ αk + βk

)
δwk =

[
dαk

dV
− wk,∞

d(αk + βk)

dV

]
δV .

(4)

We may now write (3) in the form

δ I = δV

R
+

N∑

k=1

δ Ik, (5)

where
(

rk + Lk
d

dt

)
δ Ik = δV . (6)

Here

r−1
k = τk

∂ I

∂wk

[
dαk

dV
− wk,∞

d(αk + βk)

dV

]∣∣∣∣
ss

, (7)

Lk = τkrk . (8)

Hence, for a small perturbation around the steady state, the
current I responds as though the resistance R is in paral-
lel with N impedance lines. Each of these is a resistance rk

that is itself in series with an inductance Lk . Such inductive
terms account for the oscillatory overshoot commonly seen
in response to depolarising current steps or even after the fir-
ing of an action potential. Koch terms this form of equivalent
linear membrane circuit quasi-active to distinguish it from a
truly active (i.e. nonlinear) membrane (Koch 1984).
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Now consider a general current balance equation in the
form

C
dV

dt
= −gL(V − VL) − I + Iinj. (9)

The linearised equations will be

C
dV

dt
= − V

R̃
−

N∑

k=1

Ik + Iinj,
1

R̃
= gL + 1

R
, (10)

Lk
dIk

dt
= −rk Ik + V . (11)

The steady state voltage satisfies I (Vss, w1,∞(Vss), . . . ,

wN ,∞(Vss))+ gL(Vss − VL) = Iinj. Introducing the Laplace
transform (with spectral parameter ω)

f (ω) =
∞∫

0

dte−ωt f (t), (12)

we find that V (ω) = K (ω)Iinj(ω), where

K (ω) =
∑N

k=1 rk + ωLk

(Cω + R̃−1)
(∑N

k=1 rk + ωLk

)
+ 1

. (13)

We identify K (ω) as the impedance of the linearised sys-
tem, and note that it is a ratio of two polynomials, with the
denominator of order N + 1, and the numerator of order N
(where N is the number of gating variables). For example,
the linearisation of the Hodgkin–Huxley model generates a
bandpass filter with optimal response around 67 Hz [see for
example (Koch 1984)]. The range of validity of the reduc-
tive process is limited to a few millivolts around the resting
potential. Later in Sect. 4 we will use this approach to calcu-
late the equivalent ‘LRC’ circuit model for a membrane with
a so-called Ih current.

We are now in a position to treat the dynamics of an infi-
nite unbranched passive dendritic cable model supplemented
by resonant currents of the type just described. In Sect. 3 we
will show how the response of a tree can be built up in terms
of this solution and an appropriate set of coefficients deter-
mined both by the geometry of the tree and the resonances
on each segment of the tree. We take as our starting point the
standard cable equation coupled to a set of resonant currents.
Writing V = V (X, t), X ∈ R, t ≥ 0, as the dendritic voltage
the resonant cable equation is

∂V

∂t
= − V

τ
+ D

∂2V

∂ X2 − 1

C

[
∑

k

Ik − Iinj

]
,

(14)
Lk

dIk

dt
= −rk Ik + V .

Here D is the cable diffusion coefficient and τ the (passive)
cell membrane time constant. After Laplace transforming
(14) we obtain the ODE

−VX X + γ 2(ω)V

= Iinj − ∑
k

Lk Ik (X,t=0)
(rk+ωLk )

+ CV (X, t = 0)

C D
, (15)

γ 2(ω) = 1

D

[
1

τ
+ ω + 1

C

∑

k

1

rk + ωLk

]
, (16)

where V = V (X, ω) and Iinj = Iinj(X, ω). Introducing a
re-scaled space x = γ (ω)X gives

− Vxx + V = A, (17)

where

A(x, ω) = 1

C Dγ 2(ω)

[
Iinj(x/γ (ω), ω)

−
∑

k

Lk Ik(x/γ (ω), t = 0)

rk + ωLk

+CV (x/γ (ω), t = 0)

]
. (18)

The Green’s function of the operator (1 − dxx ) is simply
H∞(x) = e−|x |/2, and we may write the general solution to
(17) in the form

V (x, ω) =
∞∫

0

dy H∞(x − y)A(y, ω). (19)

In original co-ordinates (and considering vanishing initial
data) we have that

V (X, ω) =
∞∫

0

dY G∞(X − Y, ω)I (Y, ω), (20)

where I (X, ω) = Iinj(X, ω)/C and

G∞(X, ω) = H∞(γ (ω)X)

Dγ (ω)
= e−γ (ω)|X |

2Dγ (ω)
. (21)

Performing the inverse Laplace transform gives

V (X, t) =
t∫

0

ds

∞∫

0

dY G∞(X − Y, t − s)I (Y, s), (22)

where G∞(X, t), is the inverse Laplace transform of G∞
(X, ω). Note that in the limit rk → ∞ we recover the purely
passive system (γ 2(ω) = (1/τ + ω)/D) with Green’s func-
tion

G∞(X, t) = e−t/τ

√
4π Dt

e−X2/(4Dt)	(t). (23)

Here 	(t) is the Heaviside step function.
Next we will see how to treat a branched network of con-

nected dendritic segments, each possessing its own resonant
dynamics.
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3 Branching

A caricature of a branched dendritic tree with resonant mem-
brane is depicted in Fig. 1. We define a node as point where
branch segments touch (i.e. the vertices of the graph describ-
ing the tree). Nodes that do not have child nodes will be called
terminal nodes. A finite segment of the tree, labelled by i , is
described by the dynamics

∂Vi

∂t
= − Vi

τi
+ Di

∂2Vi

∂ X2 − 1

Ci

[
∑

k

Ik,i − Iinj,i

]
,

(24)
Lk,i

dIk,i

dt
= −rk,i Ik,i + Vi , 0 ≤ X ≤ Li .

We may then specify the dynamics on a tree by ensuring the
appropriate boundary conditions at all nodes and terminals.
These are (i) continuity of potential, and (ii) conservation of
current. If we choose the coordinates on all of the radiating
branches so that the node is at the point X = 0 then continuity
of potential requires that

Vi (0, t) = Vj (0, t), (25)

for all values of i and j corresponding to segments radiating
from the node. Conservation of current gives

∑

j

1

r j

∂Vj

∂ X

∣∣∣∣
X=0

= 0. (26)

Here r j is the axial resistance on segment j (in 
/cm), and the
sum is over all j values corresponding to segments radiating
from the node in question. At an open terminal we impose
Vi (Li , t) = 0 and at a closed end ∂Vi (X, t)/∂ X |X=Li = 0.
After Laplace transforming (24) and rescaling we have that

− (Vi )xx + Vi = Ai , 0 < x < Li (ω), (27)

where Li (ω) = γi (ω)Li and

γ 2
i (ω) = 1

Di

[
1

τi
+ ω + 1

Ci

∑

k

1

rk,i + ωLk,i

]
, (28)

with

Ai (x, ω) = 1

Ci Diγ
2
i (ω)

[
Iinj,i (x/γi (ω), ω)

−
∑

k

Lk,i Ik,i (x/γi (ω), t = 0)

rk,i + ωLk,i

+Ci Vi (x/γi (ω), t = 0)

]
. (29)

We may write the general solution to (27) in the form

Vi (x, ω) =
∑

j

L j (ω)∫

0

dy Hi j (x, y, ω)A j (y, ω), (30)

dendrites

soma

Fig. 1 A caricature of a branched dendritic tree with resonant mem-
brane. Each segment of the tree has its own resonant dynamics described
by an ‘LRC’ circuit. The soma is regarded as a special node of the graph
describing the dendritic tree

where Hi j (x, y, ω) satisfies

[1 − dxx ] Hi j (x, y, ω) = δi jδ(x − y). (31)

In addition Hi j (x, y, ω) must satisfy boundary conditions
similar to those given above for Vi , namely

Hkj (0, y, ω) = Hmj (0, y, ω), (32)
∑

i

zi (ω)
∂ Hi j (x, y, ω)

∂x

∣∣∣∣
x=0

= 0, zi (ω) = γi (ω)

ri
. (33)

Also at an open terminal node we require

Hi j (Li (ω), y, ω) = 0, (34)

and at a closed terminal node

∂ Hi j (x, y, ω)

∂x

∣∣∣∣
x=Li (ω)

= 0. (35)

As it stands our discussion, and indeed that in (Abbott et al.
1991), does not include the coupling of a tree to a soma. For
passive trees one way to treat this is to consider equivalent
cylinders connected to an isopotential soma, as in the work
of Evans et al. (1992, 1995). To include this important spe-
cial node we also treat the soma as an equipotential surface
with a resistance Rs , capacitance Cs and further include an
inductive pathway described by rs and Ls . The membrane
voltage in the soma Vs has to satisfy the following equations

Cs
∂Vs

∂t
= − Vs

Rs
+

∑

j∈�

1

r j

∂Vj

∂ X j

∣∣∣∣∣∣
X j =0

− Is, (36)

Ls
dIs

dt
= −rs Is + Vs, (37)

with Vs(t) = Vj (0, t) and j ∈ �, where � is the set that
indexes all of the branches attached to the soma. In this case
Hi j (x, y, ω) must satisfy the further boundary condition

∑

k∈�

zk(ω)
∂ Hkj (x, y, ω)

∂x

∣∣∣∣
x=0

− γs(ω)Hkj (0, y, ω) = 0,

(38)
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where

γs(ω) = Csω + 1

Rs
+ 1

rs + ωLs
. (39)

We now seek a solution for Hi j (x, y, ω) in terms of the
known response function H∞ and the labels (i, j, x, y) and
the frequency dependent parameters γk(ω), where k indexes
every segment in the tree. An infinite series expansion of this
type that is consistent with (31) is

Hi j (x, y, ω) =
∑

trips

Atrip(ω)H∞(Ltrip). (40)

Here Ltrip = Ltrip(i, j, x, y, ω) is the length of a path along
the tree that starts at point x = γi (ω)X on branch i and ends
at the point y = γ j (ω)Y on branch j . Note that on interme-
diate branches between branches i and j , labelled by k say,
that distances are measured in terms of the scaled coordinates
γk(ω)X , X ∈ [0,Lk]. We shall call these frequency depen-
dent path lengths trips in analogy to the terminology used in
the “sum-over-trips” formalism of Abbott et al. (1991). How-
ever, it is important to stress that in our case these trips depend
upon the set of frequency dependent parameters γi (ω) that
capture the resonant properties of the tree. As in (Abbott et al.
1991) trips are constructed in accordance with the following
rules:

1. A trip may start out from γi (ω)X by travelling in either
direction along segment i , but it may subsequently
change direction only at a node or a terminal. A trip
may pass through the points γi (ω)X and γ j (ω)Y but
must begin at γi (ω)X on segment i and end at γ j (ω)Y
on segment j .

2. When a trip arrives at a node, it may pass through the
node to any other segment radiating from the node or it
may reflect from the node back along the same segment
on which it entered.

3. When it reaches a terminal, a trip always reflects back,
reversing its direction.

Every trip generates a term in (40) with Ltrip given by sum-
ming the lengths of all the steps taken along the course of the

trip. For example the four primary trips Ltrip(i, j, x, y, ω)

on a simple dendritic tree consisting of two segments are
γi (ω)(Li − X) + γ j (ω)Y , γi (ω)(Li + X) + γ j (ω)Y , γi (ω)

(Li − X) + γ j (ω)(2L j − Y ) and γi (ω)(Li + X) + γ j (ω)

(2L j − Y ) respectively. Note that all longer trips, even in a
larger branched network, would consist only of constant addi-
tions to these four basic lengths. Hence, Ltrip(i, j, x, y, ω) is
a linear function of ±x , as required for H∞(Ltrip) to be a
solution to (31).

In Appendix A we prove that (40) satisfies the required
boundary conditions if the trip coefficients Atrip(ω) are cho-
sen according to the following rules:

1. From any starting point Atrip(ω) = 1.
2. For every node at which the trip passes from an initial

segment k to a different segment m (m �= k) Atrip(ω) is
multiplied by a factor 2pm(ω).

3. For every node at which the trip enters along segment
k and then reflects off the node back along segment
k Atrip(ω) is multiplied by a factor 2pk(ω) − 1.

4. For every closed (open) terminal node Atrip(ω) is multi-
plied by a factor +1 (−1).

Here the frequency dependent parameters pk(ω) are given as

pk(ω) = zk(ω)∑
m zm(ω)

. (41)

For a node describing the soma this coefficient takes the mod-
ified form

pk(ω) = zk(ω)∑
m zm(ω) + γs(ω)

. (42)

Thus we arrive at the generalisation of the “sum-over-
trips” formalism that covers arbitrary resonant dendritic trees.
In contrast to the original “sum-over-trips” formulation these
arguments are developed in Laplace space and it remains to
transform back to the temporal domain. To do this we first
write Vi (X, ω) in the unscaled spatial coordinates as

∑

j

L j∫

0

dY Hi j (γi (ω)X, γ j (ω)Y, ω)γ j (ω)A j (γ j (ω)Y, ω).

(43)

Introducing Gi j (X, Y, ω) = Hi j (γi (ω)X, γ j (ω)Y, ω)/(D j

γ j (ω)) we have that

Vi (X, ω) =
∑

j

L j∫

0

dY Gi j (X, Y, ω)[U j (Y, ω) + I j (Y, ω)],

(44)
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where Ii (X, ω) = Iinj,i (X, ω)/Ci and

Ui (X, ω) = Vi (X, t = 0) − 1

Ci

∑

k

Lk,i Ik,i (X, t = 0)

rk,i + ωLk,i
.

(45)

After taking the inverse Laplace transform of (44) we obtain

Vi (X, t) =
∑

j

⎡

⎢⎣

L j∫

0

dY Gi j (X, Y, t)U j (Y, t = 0)

+
t∫

0

ds

L j∫

0

dY Gi j (X, Y, t − s)I j (Y, s)

⎤

⎥⎦ .

(46)

Hence we identify the inverse Laplace transform of
Gi j (X, Y, w), namely Gi j (X, Y, t), as the Green’s function
of the resonant dendritic tree. Note that we can build this func-
tion using a combination of the “sum-over-trips” approach
and a rescaling according to the resonant properties of each
segment, before finally taking an inverse Laplace transform.
Moreover, this naturally generalises the original approach of
Abbott et al. (1991) not only to resonant dendritic trees, but
to those with different passive cell membrane properties on
each segment (i.e. τi and Di differ across segments).

For the case that γk(ω) = γm(ω) then pk(ω) is inde-
pendent of ω. In this case for the choice pk = 1/2 a node
acts no differently from a point on a single cable and we
see that r−1

k = ∑
m �=k r−1

m . Since the axial resistance rk

scales as d−2
k

√
Dk , where dk is the radius of the kth branch,

then we recover Rall’s equivalent cylinder condition, d3/2
k =

∑
m �=k d3/2

m , as first noted in (Abbott et al. 1991). Note that
the rules for computing Gi j (X, Y, ω) require that trips start
at X and end at Y . To compute the function G ji (Y, X, ω)

the reverse trips from Y to X have to be used. If the trips are
generated in reverse order the probability factors associated
with crossing the nodes will be different. However, a simple
calculation shows that the result of summing over reversed
as opposed to original trips differs only by a constant factor
Diri/(D jr j ). This leads to the simple reciprocity identity

Gi j (X, Y, t) = Diri

D jr j
G ji (Y, X, t). (47)

In summary the Green’s function for an arbitrary branched
resonant dendritic tree is given by the Bromwich integral
(inverse Laplace transform)

1

2π i

c+i∞∫

c−i∞
dωeωt Hi j (γi (ω)X, γ j (ω)Y, ω)

D jγ j (ω)
. (48)

Here, γi (ω) is given by (28) and Hi j (X, Y ) is given by
(40). This last equation expresses Hi j in terms of an infinite

sum of terms involving the fundamental response function
H∞(x) = e−|x |/2 and the length of a frequency dependent
‘trip’. The trip coefficients Atrip(ω) are generated according
to the rules in Abbott et al. (1991), under the replacement
of pk by pk(ω) as given by (41) and (42). For any practical
computational implementation the number of terms in the
sum for Hi j must be truncated. Since contributions of the
individual terms for long trips (fixed ω) are small, this trun-
cation can be done by introducing a length cutoff. Numerical
inversion of the Laplace transform can be efficiently per-
formed using fast Fourier transforms. We have checked the
validity of this approach by comparing code written in both
c++ and Matlab with brute force simulations performed
in Neuron (Carnevale and Hines 2006) for a wide range
of realistic neuronal geometries. Moreover, in many cases a
good approximation is reached by including only the four
shortest trips. In the next section we present some examples
of this approach.

4 Resonances associated with Ih

Many neurons exhibit resonances whereby subthreshold
oscillatory behaviour is amplified for inputs at preferential
frequencies (Hutcheon and Yarom 2000). A nice example is
that of the subthreshold frequency preference seen in neu-
rons of rat sensorimotor cortex (Hutcheon et al. 1996). In
response to suprathreshold inputs, this frequency preference
leads to an increased likelihood of firing for stimulation near
the resonant frequency. It is known that the nonlinear ionic
current Ih is partly responsible for this resonance. Indeed Ih

plays a variety of important roles in many neuronal and non-
neuronal cell types (Pape 1996), and it is believed that the
presence of Ih in dendrites could have a significant impact
on the integration of subthreshold synaptic activity (Magee
1998). As such it is interesting to apply the framework we
have developed above to the specific case of the Ih current.
Moreover, to gain insight into the resonant effects of Ih it is
useful to explore both idealised geometries and more realistic
reconstructed cells.

Here we focus on the Ih model of Magee (1998), given by

Ih = gh(V − Vh) f, (49)

where f is a single gating variable. The details of this model
are given in Appendix B. In Fig. 2 we plot the membrane volt-
age of an unbranched semi-infinite resonant dendrite, with a
uniformly distributed nonlinear Ih current, in response to a
constant current injection of finite duration. Also shown is the
plot of the voltage from the linearised model. The closeness
of the two curves emphasises the usefulness of the quasi-
active membrane description in approximating a fully non-
linear model of Ih .

123



Biol Cybern

0 200 400 600

−40

−20

0

20

(ms)

(m
V

)

Fig. 2 Membrane voltage of an unbranched semi-infinite resonant den-
drite, at the location of the stimulus (i) and 500µm away from the
point of stimulation (ii), in response to a current injection of ampli-
tude −0.3 nA and duration 400 ms. Passive parameters of the dendrite:
τ = 20 ms, D = 50,000µm2/ms and C = 1 µF/cm2. Dashed lines
the resonant membrane is modelled by an nonlinear Ih current given
by (49). Solid lines the resonant membrane is modelled by an ‘LRC’
circuit with r = 13,500
cm2 and L = 1, 150 H cm2 (calculated using
(7) and (8))

4.1 Idealised geometries I

For the membrane with the ‘LRC’ circuit shown in Fig. 1
(with a single inductance) the natural frequency is given by

ω∗ =
√

C L − Cr

C L
. (50)

For an unbranched infinite resonant dendrite with a homo-
geneous distribution of electrical properties along its length
the function G∞(X, ω) given by (21) will have its maximum
at the frequency ω∗ for any X . In contrast a branched sys-
tem will not exhibit such a stimulus location independent
property.

To study how branches with differing natural frequen-
cies interact we first consider the case of two semi-infinite
branches (with common passive parameters τ , D and C),
with natural frequencies ω∗

i = (
√

C Li − Cri )/(C Li ) con-
nected together at X = 0, such that ω∗

2 > ω∗
1. The response

functions G11(X, Y, ω) and G12(X, Y, ω) are easily con-
structed for an applied stimulus at location Y on branch 1 and
branch 2 respectively. The frequencies at which these func-
tions reach their maximum define the resonant frequency
of the (admittedly simple) dendritic tree, and thus satisfy
∂Gi j (X, Y, ω)/∂ω = 0. Note that the function G12(X, Y, ω)

consists of only one term 2p2(ω)H∞(γ1(ω)X + γ2(ω)Y )/

(D2γ2(ω)), and the resonant frequency 
 of the tree satisfies

(γ ′
1 X + γ ′

2Y )(r1γ2 + r2γ1) + r1γ
′
2 + r2γ

′
1 = 0, (51)

where γi = γi (
) and γ ′
i = dγi (
)/dω. The resonant fre-

quency of the tree when the stimulus and response are taken
on the same branch is obtained in a similar fashion (though
the expression for G11(X, Y, ω) consists of two terms). In

 3000 0 3000
9

11

13

15

17

= 500 µm
= 250 µm

0

branch 1 branch 2

branch 2branch 1

(H
z)

Fig. 3 An idealised dendritic tree with two semi-infinite resonant
branches. 
 is the resonant frequency of the whole tree as recorded
at the locations X = 250µm and X = 500µm (on branch 1) as a func-
tion of the stimulus location Y (which can be taken on either branch).
Membrane parameters for each branch: τ1 = τ2 = 20 ms, D1 = D2 =
50, 000 µm2/ms, C1 = C2 = 1µF/cm2. The resistance and induc-
tance of branch 1 are r1 = 27, 000 
cm2 and L1 = 2, 300 H cm2

respectively (with natural frequency ω∗
1 = 9.11 Hz). The resistance

and inductance of branch 2 are r2 = 13, 500 
cm2 and L2 = 1, 150
H cm2, respectively, (with natural frequency ω∗

2 = 17.75 Hz). Exam-
ples of voltage profiles in response to a current step for two cases marked
by (closed circle) are shown in Fig. 4

Fig. 3 we plot the resonant frequency of the tree, 
, with
varying stimulus point Y and fixed response point X . This
figure nicely demonstrates that if the natural frequency of the
branches differ, then the frequency with which the whole tree
responds depends on the location of the stimulus. Loosely
speaking the response on branch 1 (far from branch 2) has a
frequency more like that of ω∗

1 when the stimulus is nearby,
and a frequency more like that of ω∗

2 when the stimulus is
on the other branch and far away. Figure 4 shows examples
of voltage responses and Green’s function on branch 1 in
response to the injected current on branch 2.

4.2 Idealised geometries II

Here we consider the case of three semi-infinite dendrites
emanating from a central node, as depicted in Fig. 5. As
before, the stimulus is applied to either branch 1 or branch
2. The resonant frequency of the tree may be constructed in
a similar fashion to that above. For example, the resonant
frequency of the function G12(X, Y, ω) is found by solving

(γ ′
1 X + γ ′

2Y )(r1r3γ2 + r2r3γ1 + r1r2γ3)

+r1r3γ
′
2 + r2r3γ

′
1 + r1r2γ

′
3 = 0. (52)

In Fig. 5 we plot the resonant frequency of the tree as recorded
on branch 1 in response to a stimulus (on branches 1 and 2) as
the natural frequency on branch 3 is varied. Fig. 5a shows an
example where ω∗

1 = ω∗
2. If ω∗

3 is below some critical value,
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Fig. 4 Examples of voltage
profiles and Green’s functions
on branch 1 at the location
X = 250µm in response to the
current with amplitude −0.3 nA
and duration of 400 ms injected
on branch 2. a Stimulus location
is Y = 0µm. b Stimulus
location is Y = 500µm. Other
parameters as in Fig. 3
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then we find that 
 = ω∗
1 = ω∗

2. Above this critical value
then 
 increases toward ω∗

3 (and more so when the stimu-
lus point is close to branch 3). Figure 5b shows an example
when the natural frequencies of branches 1 and 2 differ. If
branch 3 is passive or only weakly resonant (ω∗

3 ∼ 0), then
the system behaves much like that of the previous example
(i.e. as a system of just two interacting resonant branches).
As ω∗

3 is increased from zero the resonant frequency, 
, of
the tree (as measured on branch 1) increases toward ω∗

3.

4.3 Idealised geometries III

Till now we have considered uniform distributions of con-
ductances along a dendritic segment. However, it is now well
known that dendritic trees can have nonuniform membrane
conductances [see for example (London et al. 1999)]. One
way to treat spatial dependencies is to break a single segment
into many pieces, each with a distinct yet uniform parame-
ter set. A piecewise constant approximation to any spatially
varying parameter can then be naturally implemented on this
segmented cable. Using such an approach we now briefly
turn to the observation that the conductance of Ih increases
with the distance from the soma in pyramidal neurons (Kole
et al. 2006; Li and Ascoli 2006).

A spatially varying conductance gh = gh(X) leads to a
spatially varying steady-state and from Eqs. (7) and (8) to
spatially varying forms for the resistance and inductance.
Direct numerical simulations of a long cable with the full
nonlinear Ih model (49) show that the steady state voltage
change is less than 1 mV and the steady state change in the
gating variable is less than 0.01 for a ten-fold magnifica-
tion of gh . Hence, it is reasonable to use the approximation
r−1(X) = K gh(X) and L(X) = τr(X) (with the constant K

determined from (7) assuming a space-independent steady-
state), for a piecewise constant function gh(X). Using a chain
of 100 segments (for a dendrite of total length 200µm) we
took a piecewise constant aproximation to the function ḡ(1+
3X/100) [suggested by data from (Migliore et al. 2005)],
for fixed ḡ = 0.05 mmho cm−2, and considered the response
at the soma (X = 0) to stimuli at increasing separation from
the soma. In contrast to a spatially uniform conductance the
time-to-peak of the signal at the soma remained approxi-
mately constant, whereas in the former case it increased with
distance from the soma. In some sense we can view this
as another example of how to achieve dendritic democracy
(Häusser 2001), albeit this time for resonant dendrites.

In this example and the next the function Hi j was con-
structed using four primary trips as well as their extensions
generated by adding trips that start and end at the same point
(as discussed in Sect. 3 for the case of two connected seg-
ments). Longer trips generated from the primary trips were
compared with the imposed length cutoff and ignored if
Ltrip(i, j, x, y, ω) > 6 for fixed ω. The convergence of the
solution constructed according to the above procedure was
validated by introducing increasing length cutoffs as well as
by direct numerical simulations.

4.4 A reconstructed cell

Here we apply our formalism to a real neuronal geometry.
We consider a rat CA1 hippocampal pyramidal cell, visual-
ised with differential interference contrast optics using infra-
red illumination. The geometry of this cell was reconstructed
(indicating the presence of 396 branches along with the soma)
and saved in .hoc file format (Carnevale and Hines 2006). A
diagram of the reconstructed cell is shown in Fig. 6a. Dual
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Fig. 5 An idealised dendritic
tree with three semi-infinite
resonant branches. Here we plot
the resonant frequency 
 of the
dendritic tree as measured on
branch 1 (at X = 200µm),
whilst varying both the natural
frequency on branch 3 and the
point of stimulus (on either
branch 1 or branch 2). Passive
membrane parameters for all
three branches as in Fig. 3.
a The resistances and
inductances of branches 1 and 2
are the same and equal
r = 27, 000
cm2 and
L = 2, 300 H cm2, respectively.
b. The resistance and inductance
of branch 1 are
r1 = 27, 000
cm2 and
L1 = 2, 300 H cm2 respectively.
The resistance and inductance of
branch 2 are r2 = 13, 500
cm2

and L2 = 1150 H cm2

respectively. The resistance and
inductance of branch 3 vary
(between 67,500 and
5,400
cm2 for r3 and between
5,750 and 460 H cm2 for L3) for
both a and b
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simultaneous whole-cell patch-clamp recordings were made
in this cell and data were acquired at 5 KHz. Before sampling
the data were filtered at 1 kHz with an eight pole filter. A pulse
current of amplitude −300 pA and duration 400 ms (begin-
ning at 10 ms) was injected at the dendritic trunk. Dendritic
and somatic recordings in response to this current injection
are shown in Fig. 6b, where the voltages are plotted with
respect to rest (at about −70 mV). The observed oscillatory
voltage overshoot is believed to be associated with an Ih cur-
rent. In the corresponding quasi-active model with a single
inductive current pathway (built using the reconstructed cell

data) we take a uniform distribution of Ih channel conduc-
tances. In this case the resistance r and inductance L of the
resonant membrane are the same for all branches. Dendritic
and somatic voltage responses in the model are shown by the
solid lines in Fig. 6b. The parameters r and L were fitted to
the data, rather than assuming a specific model of Ih and fix-
ing them according to Eqs. (7) and (8). As can be seen from
the close agreement between theory and experiment in Fig. 6
the “sum-over-trips” machinery generates quasi-active filters
for realistic tree structures that can be used to organise and
understand the structure of real dual electrode recording data.
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Fig. 6 a Reconstructed rat CA1 hippocampal pyramidal cell. b An
example of dendritic (red) and somatic (blue) dual simultaneous record-
ing (with respect to rest) in response to the current injection at the den-
drite trunk (average from 20 sweeps). A pulse current with amplitude
−300 pA is applied for a duration of 400 ms starting from 10 ms. The
other two curves in b are dendritic and somatic voltage responses cal-
culated from the model of the branched cell with resonant membrane.
The model cell was stimulated at the dendrite (as shown in a) with
the same current used in experimental recordings. Parameters across
the tree: the specific cytoplasmic resistivity Ra = 100 
cm, C = 1
µF/cm2 and the resistance across a unit area of pasive membrane Rm =
20, 000 
cm2. Thus τ = 20 ms and diffusion coefficients Di vary
from branch to branch. The conductance of Ih is assumed to be uniform
across the cell with the resistance and inductance of resonant membrane
r = 24, 000
cm2 and L = 2, 700 H cm2, respectively. Note that the
voltage drop across the electrode’s resistance is not fully compensated
and the bridge balance is not corrected on the dendritic recording so
that we shift our model results by an appropriate value of 10 mV

5 Discussion

We have developed a “sum-over-trips” formalism for con-
structing the Green’s function for a branched dendritic tree
and soma with quasi-active membrane. This generalises the
original work of Abbott et al. (1991) for passive dendrites.
Although in this paper we have focused on the ionic current
Ih , we stress here that our approach can handle any channel
kinetics written in the standard language of dynamic gating
variables. Such a framework for studying (linear) dendritic
neuron models obviates the need for the numerical solution
of an underlying set of PDEs. One advantage of using the
Green’s function in comparison to a more standard compart-
mental approach is that this function has to be computed

only once for a given dendritic structure. Thus changing the
stimulation protocol does not require a whole new numerical
simulation, rather just a convolution of the Green’s function
with the new input. In Laplace space at fixed frequency, the
computational time will depend on the geometry of the tree,
and issues of algorithmic efficiency reduce to those discussed
in detail by Cao and Abbott for passive dendrites (Cao and
Abbott 1993). Although their approach can not treat resonant
membrane our generalisation naturally does so with the intro-
duction of a frequency parameter. The remaining computa-
tional overhead is then to perform a single inverse Laplace
transform which can be done efficiently with standard numer-
ical techniques. Moreover, our framework allows for a more
analytical exploration of the way in which dendritic segments
with differing natural frequencies contribute to an overall
resonance at the level of the whole tree. It has also proved
practical in use with real neuronal geometries. Indeed there
is now a growing body of reconstructed cell data that can
be uploaded from databases such as ModelDB,1 and used
within the framework we have developed here. Of course
these geometries must be supplemented with data governing
the distribution of active ionic conductances. Alternatively,
with access to dual potential recording data, one may recover
the quasi-active properties of dendritic neurons using the the-
ory and algorithms developed by Cox and Griffith (2001).

Two natural extensions of the work in this paper sug-
gest themselves; (i) to cover tapered dendrites, and (ii) to
cover active dendrites. If in the former case the underly-
ing PDE model of the tapered model is linear [see (Scott
2002) for a recent discussion of tapering] then there may be
some hope to extend the “sum-over-trips” formalism. How
to recover quasi-active properties from tapered dendrites is
already known (Cox and Raol 2004). The problem of treat-
ing truly active dendrites (Johnson et al. 1996) would seem
at face value to be a substantially harder challenge. However,
recent work on the spike-diffuse-spike model has shown how
a system of point hot-spots embedded throughout a passive
tree can provide a reasonable caricature of a tree with active
conductances (Timofeeva et al., 2006). The solution of this
model is expressed in part using the Green’s function of the
tree without hot-spots. Obviously this can be obtained with
the “sum-over-trips” techniques we have described in this
paper. Both of these extensions are topics of current research
and will be reported upon elsewhere.
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Fig. 7 Main trips at a node
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Appendix A

Using an extension of the argument in (Abbott 1992) we
prove here that the the rules for generating the trip coeffi-
cients are consistent with the boundary conditions describing
an arbitrary branched resonant dendritic tree.

Let x denote the distance away from the node along the
branch k (see Fig. 7). The location of the stimulus y, the
segment number j and the variable ω are all considered to
be arbitrary. Suppose that we sum all the trips starting from
the node itself and ending at point y on branch j . We denote
the result of summing over all trips that initially leave the
node along segment k by Qk j (0, y, ω). The result of all trips
that leave the node along other branches m is denoted by
Qmj (0, y, ω).

Trips that start out from x and move away from the node
are identical to trips that start out from the node itself along
segment k. The only difference is that the trips in the first
case are shorter by the length x . We denote the sum of such
shortened trips by Qk j (−x, y, ω). The argument −x means
that a distance x has to be subtracted from the length of each
trip summed to compute Q (not that the trips start at the point
−x).

Trips that start out from x by moving toward the node
and then reflecting back along branch k are also identical
to trips that start out from the node along branch k except
that these are longer by the length x . In addition, because
of the reflection from the node these trips pick up a factor
2pk(ω) − 1 according to the “sum-over-trips” rules. There-
fore, the contribution to the solution Hkj (x, y, ω) from those
trips is (2pk(ω) − 1)Qk j (x, y, ω).

Finally, we have to take into account trips that start from
x , move toward the node along branch k and then leave the
node by moving out along any of the radiating branches m,
m �= k. Crossing the node introduces a factor 2pm(ω) and
the sum of such trips is given by 2pm(ω)Qmj (x, y, ω).

The full solution Hkj (x, y, ω) includes the contributions
from all different types of trips we have been discussing.

Thus,

Hkj (x, y, ω) = Qk j (−x, y, ω) + (2pk(ω) − 1)Qk j (x, y, ω)

+
∑

m �=k

2pm(ω)Qmj (x, y, ω).

(53)

The functions Q in this formula consist of infinite sums over
trips, but we do not need to know what they are to show that
the solution Hkj (x, y, ω) satisfies the node boundary condi-
tions. At a node point we have

Hkj (0, y, ω) =
∑

m

2pm(ω)Qmj (0, y, ω). (54)

The sum in the last formula is over all segments radiating
from the node including branch k and, thus, it shows that the
solution at the point x = 0 is independent of k. Therefore
Hkj (x, y, ω) obeys the boundary condition (32).

To prove the boundary condition (33) we use Eq. (53) to
find that

∂ Hkj (x, y, ω)

∂x

∣∣∣∣
x=0

=
∑

m

2pm(ω)
∂Qmj (x, y, ω)

∂x

∣∣∣∣
x=0

−2
∂Qk j (x, y, ω)

∂x

∣∣∣∣
x=0

. (55)

Now we multiply this result by pk(ω) and sum over k to get

∑

k

pk(ω)
∂ Hkj (x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑

m

2pm(ω)
∂Qmj (x, y, ω)

∂x

∣∣∣∣
x=0

(
∑

k

pk(ω) − 1

)
. (56)

Using the property that
∑

k pk(ω) = 1 we have

∑

k

pk(ω)
∂ Hkj (x, y, ω)

∂x

∣∣∣∣∣
x=0

= 0. (57)

Since pk(ω) is proportional to zk(ω) the solution Hkj (x, y, ω)

satisfies the boundary condition (33).
A similar derivation can show that the “sum-over-trips”

rules used at the terminals are also correct. If we consider a
terminal point instead of a node point, pm(ω) = 0 for m �= k
in Eq. (53) and pk(ω) = 0 for an open end or pk(ω) = 1
for a closed end boundary condition at the terminal. Then
Eqs. (54) and (57) indicate that (34) and (35) are obeyed at
all open and closed terminal nodes.

In the presence of the soma we have to check that the solu-
tion Hkj (x, y, ω) satisfies the corresponding boundary con-
ditions (32) and (38). The proof that the solution satisfies the
boundary condition (32) is identical to that for a node point.
To show that the boundary condition (38) is also satisfied we
use the following properties for Qk j (x, y, ω), namely
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∂Qk j (x, y, ω)

∂x
= −Qk j (x, y, ω), (58)

∂Qk j (−x, y, ω)

∂x
= Qk j (x, y, ω). (59)

These properties are a direct consequence of the form of
H∞(x) = e−|x |/2. We then have that

∂ Hkj (x, y, ω)

∂x

∣∣∣∣
x=0

= −
∑

m

2pm(ω)Qmj (0, y, ω)

+ 2Qk j (0, y, ω). (60)

Note that, as compared to a simple node point, pk(ω) for a
branch radiating from the soma takes the modified form given
by (42). By multiplying Eq. (60) by zk(ω) and summing over
k we obtain

∑

k

zk(ω)
∂ Hkj (x, y, ω)

∂x

∣∣∣∣∣
x=0

=

∑

m

2zm(ω)Qmj (0, y, ω)

(
1 −

∑
m zm(ω)∑

m zm(ω) + γs(ω)

)
.

(61)

This gives us

∑

k

zk(ω)
∂ Hkj (x, y, ω)

∂x

∣∣∣∣∣
x=0

=

γs(ω)
∑

m

2zm(ω)∑
m zm(ω) + γs(ω)

Qmj (0, y, ω). (62)

Using the equality (54) we recover the boundary condition
(38). ��

Appendix B

Here we complete the details of the Ih model given by (49)
as described in (Magee 1998). The potential Vh = −16 mV
and the conductance gh = 0.09 mmho cm−2. The functions
that appear in the gating dynamics are f∞(V ) ≡ w∞(V ),
α f (V ) = w∞(V )/τ f (V ) and β f (V )=(1−w∞(V ))/τ f (V ).
Here (for temperature 27◦C)

τ f (V ) = exp[0.03326(V + 80)]
0.00446(1 + exp[0.08316(V + 80)]) , (63)

w∞(V ) = 1

1 + exp[(V + 92)/8] . (64)
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