
Optimization of tumor virotherapy with recombinant
measles viruses
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Abstract

Recombinant viruses based on the vaccine strain of measles virus have potent and
selective activity against a wide range of tumors. Successful tumor therapy with these
viruses (virotherapy) depends on efficient infection of tumor cells by the virus. Infected
cells express viral proteins that allow them to fuse with neighboring cells to form syn-
cytia. Infection halts tumor cell replication and the syncytia ultimately die. Moreover,
infected cells may produce new virus particles that proceed to infect additional tumor
cells. The outcome of virotherapy depends on the dynamic interactions between the
uninfected tumor cells, infected cells and the virus population. We present a model of
tumor and virus interactions based on the phenomenologically established interactions
between the three populations. Other similar models proposed in the literature are also
discussed. The model parameters are obtained by fitting the model to experimental
data. We discuss equilibrium states and explore by simulations the impact of various
initial conditions and perturbations of the system in an attempt to achieve tumor erad-
ication. We show that the total dose of virus administered and the rate at which the
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tumor grows play determining roles on the outcome. If tumor growth can be slowed,
the minimal dose of virus needed for curative therapy can be reduced substantially.
An interesting prediction of the model is that virotherapy is more effective on larger
tumors when deceleration of growth occurs.

1 Introduction

The majority of hematopoietic neoplasms remain incurable with currently available thera-
pies. For example, multiple myeloma (MM), has a median survival of 3 to 4 years despite
the availability of high-dose therapy with stem cell transplantation and the introduction of
novel agents such as thalidomide and bortezomib [1]. Thus there is an urgent need for novel
therapeutic modalities for these disorders. Over the last few years, engineered viruses (both
DNA and RNA based) have been introduced as potential cancer therapeutic agents [2, 3].
Several trials have been performed with replication selective adenoviruses in head and neck
cancer [4] and metastatic colon carcinoma [5, 6] while Newcastle disease virus has been given
to patients with various tumor types [7]. The use of viruses for tumor therapy introduces
several new concepts in the field of therapeutics since an underlying premise of tumor ther-
apy is that the infected tumor cells become factories that generate new virus particles that
infect more tumor cells in a series of waves [2]. This introduces the concept of population
dynamics and the outcome of such therapy depends in a complex way on the interactions
between the population of virus and tumor cells [8, 9, 10, 11, 12].

Our work has centered on the use of engineered viruses, derived from the Edmonston
vaccine strain of measles virus (MV-Edm). The vaccine strain was chosen as a therapeutic
platform because of anecdotal reports of resolution of Burkitt’s lymphoma in patients who
acquired wild type measles virus infection. Moreover, the vaccine has been given to more than
a billion people with an excellent safety record. MV-Edm and derivative viruses obtained by
virus engineering have potent and selective oncolytic activity against a wide variety of human
tumors including non-Hodgkin lymphoma [13], multiple myeloma [14], ovarian carcinoma
[15], glioma [16] and breast carcinoma [17] while they leave normal tissues unharmed.

MV infection starts when the viral hemagglutinin protein (H) binds to its receptor on
target cells. The H protein displayed by wild type measles virus preferentially binds to
CD150 (also known as SLAM) [18] while the H protein of MV-Edm preferentially interacts
with CD46 [18]. Most tumor cells over-express CD46 [19, 20] and this is thought to be one
of the mechanisms behind the selective tropism of these viruses for tumor cells. Binding of
the H protein with its cognate receptor, induces conformational changes in the fusion (F)
protein which in turn triggers membrane fusion between the virus particle and the target
cell. The functional separation of target cell binding (via H) and fusion (via F) in MV
also facilitated re-targeting of the virus to specific tumors by modification of the viral H
protein [21, 22, 23, 24]. Protein engineering has also led to complete ablation of H binding
to the known viral receptors (CD46 and CD150w) so that fully re-targeted viruses that only
infect tumor cells of interest have been generated [25, 26, 27]. In addition, MV vectors have
been modified to allow non-invasive monitoring of viral gene expression by the secretion of
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the biologically inert soluble peptides CEA (MV-CEA) and human chorionic gonadotrophin
(hCG, MV-hCG) [28]. More recently, MV-Edm has been modified to induce expression of the
thyroidal sodium iodide symporter (NIS, MV-NIS) in infected cells to enable non-invasive
imaging of the biodistribution and replication of the virus in vivo [29, 30].

Although MV based vectors have potent oncolytic activity, some tumors are not elimi-
nated in vivo. Studies using MV-CEA show that although the virus efficiently infects and
propagates in these tumors, the latter may persist [15, 29, 31]. This highlights the dynamic
interplay between viral replication, tumor cell growth and the death rate of infected tumor
cells [8, 9, 10, 11, 12, 32, 33]. In this respect, MV-NIS has an advantage over the parent virus
since it can be combined with beta particle emitting isotopes such as 131-I. The electrons
emitted during isotope decay have a macroscopic path length and can destroy uninfected
tumor cells with a significant bystander effect [29, 34, 35].

Measles virus can control tumor growth by at least two mechanisms. Infected cells
express the viral H and F proteins and can interact with neighboring cells with the result
that the cells fuse together. Spread of cell-to-cell fusion leads to the formation of syncytia
that ultimately die, usually after a few days [14, 15]. In addition, once infected cells die,
they may release free virus particles that can infect surrounding cells. Moreover, infected
cells stop replicating and do not contribute to further tumor growth.

The success of tumor virotherapy depends on infection of tumor cells that serve as sites
for virus amplification. Once the virus is released from infected cells, the new particles can
infect additional tumor cells. Thus, the virus propagates through the tumor in a series of
’waves’ [2]. The interactions between the tumor and virus populations are complex and
understanding their dynamics requires mathematical modeling. There has already been
considerable work on modeling these interactions [8, 9, 10, 11, 33, 32, 36].

In the following, we describe our model of tumor and virus interactions that takes into
consideration both virus production and spread of the infection between cells. We utilize
the model to evaluate various therapeutic scenarios and to test whether curative therapy is
possible with virus alone or virus in combination with other agents. Patients with advanced
hematological cancer are usually immunosuppressed and hence the smallest dose of virus as
well as timing of therapy may be critical for an optimal response. It seems logical to try and
determine the smallest possible dose of virus that can be associated with a cure, given that
this will probably be associated with the lowest risk of complications. In the following, we
address several critical questions pertaining to tumor therapy including:

1) Is the initial tumor burden important for the outcome of therapy?

2) Is cure possible with a therapeutically achievable dose of virus?

3) Can therapy be optimized such that the dose of virus is minimized?

4) Does dose scheduling play an important role on the outcome of therapy?

We are aware of the importance of the immune response to measles virus and its potential
adverse consequences on the outcome of therapy. This is a current focus of our research
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efforts. The model we have developed is fitted to data obtained for the growth of myeloma
tumor xenografts implanted in immunocompromised mice and treated with a recombinant
measles virus. Given that these mice do not have an immune response we will not consider
the immune system further.

2 Mathematical model of virotherapy

Modeling the effects of any therapy on tumor growth requires a model for the growth of the
untreated tumor. Usually, untreated tumor growth is reliably described by the Gompertz
function [37, 38, 39, 40], yet for some tumors the more general Bertalanffy-Richards (or
generalized logistic) model is required to describe data adequately [41, 12]. We use the
Bertalanffy-Richards model given by

y′ = (g/ε)y[1− (y/K)ε], ε > 0, y(0) = y0, (1)

where y(t) is the size of the tumor cell population, r = g/ε > 0 is the effective growth
rate constant and K > 0 is the carrying capacity. We note that in the limit ε → 0 the
Bertalanffy-Richards and Gompertz models are equivalent [42, 43]. The solution of equation
(1) can be written in an explicit form [42, 43, 44]

y(t) = y0[f
ε + (1− f ε)e−gt]−1/ε, where f = y0/K. (2)

To model the effects of virotherapy we have to consider the dynamics of at least three
interacting populations [9, 12]:

• y(t) – uninfected tumor cells,

• x(t) – virus-infected tumor cells, and

• v(t) – free infectious virus particles.

A graphical representation of the model is given in Fig. 1.
As noted in the Introduction, the infection spreads in tumor cells either by a productive

encounter of one free virus particle with one uninfected cell, or by an encounter of an infected
cell (expressing the viral F and H proteins) with an uninfected cell. In the latter case two
cells fuse to form a syncytium that continues to spread acquiring new surrounding cells.
Thus, the rate at which the population of uninfected cells is depleted is given by the sum
κy(t)v(t) + ρy(t)x(t), where κ > 0 and ρ ≥ 0 are corresponding rate constants.

Uninfected cells are assumed to be proliferating according to the Bertalanffy-Richards
model. Infected cells most probably do not proliferate [45], but are assumed to be dying
at the effective rate δx(t) (Fig. 1). The rate constant δ may include the rate constant of
apoptotic death (a > 0) and possibly a very small rate constant for proliferation (p), so that
δ = a− p ≥ 0.
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Figure 1: Schematic diagram of the proposed model for virotherapy. Here y denotes the
populations of uninfected cells. Proliferation of these cells is described by an effective pro-
liferation rate r, carrying capacity K and parameter ε which characterizes the shape of the
sigmoidal growth curve. Populations of infected cells and virus are denoted by x and v
respectively. Indicated rates of first and second order are explained in the text. Solid line
arrows signify population influx or depletion, while dotted lines indicate that corresponding
rates depend on population x.

The population of free virus particles can grow when infected cells (including syncytia)
burst and release virions that have replicated within the cell. Thus the rate of free virus
replication can be modeled by αx where α ≥ 0 is the corresponding rate constant. Finally,
the rate of free virus elimination is modeled by the sum κy(t)v(t) + ωv(t) (Fig. 1). The
first term in the sum corresponds to the rate at which virus particles enter uninfected cells.
Note that we assume that one virus particle infects one cell. These particles are incapable
of infecting further cells and are no longer part of the free virus population. The term
ωv(t), ω ≥ 0 represents a rate of elimination of free virus particles by other causes including
non-specific binding and generation of defective interfering particles.

With these assumptions about rates, the virotherapy model can be represented by the
following system of differential equations:

y′ = ry[1− (y + x)ε/Kε]− (κyv + ρyx), y(0) = y0,
x′ = κyv − δx, x(0) = 0,
v′ = αx− (κyv + ωv), v(0) = v0.

(3)

The tumor is assumed to have grown to size y0 when a single dose of virus v0 is injected
at time t = 0. The term (y + x)ε/Kε ensures that the tumor cannot grow beyond carrying
capacity K. The mathematical proof of this property of system (3) is analogous to the proof
given in Appendix A of [12].

The rate term ρyx, which describes one possible way of infection, does not appear in the
equation for x′ because no new infected cell was generated in that encounter. Rather, an
uninfected cell became fused with an infected cell, or with an already formed syncytium.
Therefore, the population x(t) is assumed to consist of single infected cells and syncytia.
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Experimental evidence suggests that infection is mostly due to such fusion with infected
cells, rather than by free virus infection, which suggests that κ� ρ (see [15, 29] and Section
4). Although the rate constant κ in (3) may be small compared to ρ, it still should not
be completely negligible. Namely, if κ = 0, the model (3) breaks down because x(t) may
become negative. Thus we have to assume κ > 0, or reduce the model to the following:

y′ = ry[1− (y + x)ε/Kε]− ρyx, y(0) = y0 > 0,
x′ = −δx, x(0) = x0 > 0,

(4)

In this simplified model it is assumed that there is an initial, fast free virus infection. This
yields a number x0 of infected cells which then infect other cells by fusion. This model did
not fit the existing data (Section 4) and will not be considered further.

The proposed model (3) is different from some previous models of virotherapy based on
population dynamics [8, 9, 10, 11, 12, 32, 46]. Wodarz [9] has proposed and discussed a
model in which ρ = 0, ε = 1 and the κyv term in the equation for v′ is absent:

y′ = ry[1− (y + x)/K]− dy − κyv,
x′ = κyv − δx,
v′ = αx− ωv.

Here the term dy models the death rate of uninfected cells. In our model (3) this term is
not included because it is redundant. Formally one can write:

ry[1− (x+ y)ε/Kε]− dy = r̃[1− (x+ y)ε/K̃ε]

where r̃ = r − d, K̃ε = (r − d)Kε/r.
In a previous attempt to model the dynamics of infected and uninfected tumor cells,

Wodarz ([8, 46]) included the infection term βyx, but neglected the dynamics of the free
virus population. He considered the following model equations:

y′ = ry[1− (x+ y)/K]− dy − βxy

x′ = βxy + sx[1− (x+ y)/K]− δx
(5)

Here it is assumed that both populations proliferate, although infected cells are not likely
to proliferate [45]. The term βxy in equation (5) implicitly models the spread of virus and
it is conceptually different from our term ρxy representing the specific rate of infection via
formation of syncytia.

Following Wodarz [9], in our previous model [12] we have not included the ρxy term.
Also not included was the κyv term in the equation for v′. However, this term could be
important, because in its absence the free virus particle count is not conserved. The models
described in [10, 11, 33, 32] are more complex (and probably more realistic) spatio-temporal
models; however they do not include the term analogous to κyv in the equation for the virus
population.
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Population dynamics models, such as (3), are generally realistic when a population con-
sists of many individuals. The goal of therapy is to reduce the total number of tumor cells,
given by u(t) = x(t)+y(t), to zero. However, due to the uniqueness of solutions, this goal can
never be achieved in ordinary differential equations models of the type described here. We
consider the tumor effectively eradicated if u(t) < 1 is achieved at some finite time smaller
or equal to the maximal lifetime of a mouse taken to be 1000 days. Also, if the tumor bur-
den is below a detectable amount by 1000 days, the therapy is deemed successful. A tumor
consisting of less than 106 cells (or approximately 1 mm3) is considered to be undetectable.
The model may not be realistic when the number of tumor cells (or virus particles) is very
small, so in some ways the lowest limit of 1 cell (or virus particle) is artificial. Yet, it can
be used to estimate when the ultimate goal of virotherapy is achieved, i.e. when the tumor
cell population is eliminated and there is no more free virus present.

3 Analysis of equilibria

The stable states of system (3) which are approached as t → ∞ represent the outcome of
therapy, if the tumor burden x(t) + y(t) has not been reduced to a level below 1 cell at
some finite time. Simulations suggest that for physiologically relevant parameters, all such
states are equilibria. We therefore begin by characterizing the fixed points of the model and
analyzing their stability.

In most parameter regimes there are three equilibrium points of system (3). The desired
outcome of therapy corresponds to the equilibrium point at the origin:

y1 = 0, x1 = 0, v1 = 0, (6)

This is an unstable point for biologically relevant parameters. The Jacobian of the system
for this point has the eigenvalues

λ1 = r > 0, λ2 = −δ < 0, λ3 = 0.

The unstable manifold of this equilibrium is the y-axis. This instability is a consequence
of the assumptions made in the model: In the absence of the virus, the number of infected
cells x will remain at 0, solutions will remain on the y axis and grow according to the
Bertalanffy-Richards model.

In the absence of therapy, or if therapy fails, the tumor eventually grows to its maximal
size. This is represented by the equilibrium point

y2 = K, x2 = 0, v2 = 0. (7)

The Jacobian of the system for this point has eigenvalues

λ1 = −rε/K < 0, λ2,3 = −δ − κK − ω ±
√

(δ + κK + ω)2 − 4q (8)

where
q = (α− δ)κK − δω.
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All eigenvalues are real for biologically relevant parameters. In case q < 0 all eigenvalues
are negative and the equilibrium is stable. When q > 0 it follows from (8) that λ2 > 0 and
the equilibrium is unstable. In the unlikely case that q = 0 it follows λ2 = 0 and stability is
determined by higher order terms.

Partial success of therapy is represented by the equilibrium point:

y3 =
δω

(α− δ)κ
, x3 =

1

c

[
1−

(
x3 + y3

K

)ε]
, v3 =

α− δ

ω
x3, (9)

where

c =
κ(α− δ)

rω
+
ρ

r
.

As discussed in the previous section x(t) + y(t) ≤ K. Therefore, at this equilibrium point
y3 < K, since y3 = K corresponds to the equilibrium point of complete therapy failure.

For biologically relevant parameters, non-negative values of y3 and v3 are obtained only
for α > δ. In this case c > 0, and it is easy to show that equation (9) has a unique solution
for x3. Indeed, let us denote by ψ(ξ) the function

ψ(ξ) = [(ξ + y3)/K]ε + cξ − 1.

This is a continuous function on the interval [0, K − y3] and ψ(0) = (y3/K)ε − 1 < 0, while
ψ(K − y3) = c(K − y3) > 0. Therefore ψ(ξ) has zero within this interval, i.e., there exists at
least one x3 ∈ [0, K−y3] which solves the nonlinear equation (9). Furthermore, this solution
is unique, because if we assume two different solutions ξ1 and ξ2, then ψ(ξ1)−ψ(ξ2) = 0 and
therefore

[(ξ1 + y3)/K]ε − [(ξ2 + y3)/K]ε = −c(ξ1 − ξ2).

Both ξ1 > ξ2 and ξ1 < ξ2 lead to a contradiction and therefore ξ1 = ξ2. Thus, the equilibrium
(9) is uniquely defined for all biologically relevant parameters. The only exception are the
cases ω = 0 and α = δ, when (9) does not exist, and only (6) and (7) are relevant. The
significance of equilibrium (9) is that it offers a permanent reduction of tumor burden if
therapy fails to eliminate tumor cells at some finite time.

Finding the eigenvalues of the Jacobian at the equilibrium point (y3, x3, v3) leads to
solving a cubic equation. The Routh-Hurwitz criterion [47] for the solutions indicates that
for some combinations of model parameters all the solutions can have negative real parts
and therefore the equilibrium point can be stable. However, since equation for x3 cannot be
analytically solved, the conclusion about stability has to be reached by numerical calculations
for the specific parameter values.

In the next section it is shown that experimental data for myeloma tumor size in mice
under virotherapy with MV-NIS are consistent with α = ω = 0. This implies that approx-
imately no free virus is being produced in vivo and the therapeutic effect of virotherapy is
only due to cell-to-cell fusion and syncytium formation. Also, this singular model implies
that the free virus is not decreased due to elimination or inactivation. In this case the equi-
librium corresponding to successful therapy (6) and that corresponding to therapy failure
(7) remain unchanged in location and stability.
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In addition to the equilibria (6, 7) discussed above there is now a line of fixed points
given by

L = {(y, x, v) : y3 = x3 = 0, and v = v̄ is arbitrary}. (10)

These equilibria represent the situation when the tumor is eradicated, but there is a residual
virus population v̄. The size of this residual population depends on initial conditions. The
Jacobian at each fixed point (10) has the eigenvalues

λ1 = 0, λ2 = −δ < 0, λ3 = r − κv̄. (11)

The eigenvalue λ1 corresponds to an eigenvector parallel with L, and the stability of points
on L is determined by the sign of λ2 and λ3. Therefore all points satisfying

v̄ <
r

κ

are stable, and those satisfying the opposite inequality are unstable. As shown in Fig. 2, the
point (0, 0, r/κ) lies on a separatrix between the basin of attraction of the line, and the basin
of attraction of the equilibrium (K, 0, 0) representing therapy failure. We note that the line
given by (10) is invariant for any parameter values, however in the case that α and ω, are
small and positive which still might be consistent with our data (see next Section), L is no
longer attracting. We discuss this further in Section 5.

4 Model validation and parameter estimation

The proposed model (3) was validated by least-square fits to available experimental data
obtained for multiple myeloma induced in SCID mice [29]. These data include the tumor
growth curve without treatment, and the growth curve when virotherapy is introduced on
day 15. Tumor size was measured as volume (in mm3), while our model considers population
of cells. In the following we will assume that 1 mm3 corresponds to 106 cells and we will
consider cell and virion populations y, x, v as expressed in units of 106.

The model was validated and parameters estimated by using the weighted non-linear
least squares method. Weighting factors were chosen as 1/σ2

i , where σi is the experimentally
determined standard deviation for the i-th data point. Technically, least-squares fitting was
conveniently performed in MLAB ( MD, http://www.civilized.com, Civilized Software Inc.,
Bethesda, MD), but in cases where the minimum was difficult to find, we used our minimizer
[48] in conjunction with a custom made ODE solver.

In the case of untreated tumor the fitting was relatively simple, as the analytic form
of the solution is known (see equation (2)). A good fit was obtained with the exponent
ε ≈ 1.65 rather than ε ≈ 0, which would imply that growth follows the Gompertz function
(see Fig. 3 for parameter estimates). By using model selection criteria we have shown that
the generalized model with ε ≈ 1.65 more adequately fits the growth data for untreated
tumor then both the Gompertz and the logistic model (ε = 1) [12].
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Figure 2: Top: The projection onto the v − y plane of a collection of orbits in the singular
case α = ω = 0. Initial values v(0) range between 155 and 305, y(0) = 9, and x(0) = 0. The
orbit singled out by the heavy line lies on the separatrix between two basins of attraction.
Points to the left are attracted to the equilibrium (K, 0, 0) (therapeutic failure), and points
to the right are attracted to the line of fixed points L (successful therapy). Other parameters
are chosen as r = 0.206, ρ = 0.2145, K = 2139, ε = 1.649, κ = 0.001, δ = 0.5115. Bottom:
The same simulation with α = ω = 0.001. As discussed in Section 5, the line L is no longer
attracting.
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Figure 3: Weighted least-squares fitting of the model (3) to growth data for multiple myeloma
in SCID mice [29]. Error bars with circles denote data for untreated tumor and with squares
for tumor under virotherapy. Untreated tumor data were fitted ([12]) using the generalized
logistic model (2) resulting in r = 0.2062134 day−1, K = 2139.258, ε = 1.648773. The
values of parameters obtained by fitting to virotherapy data are given in Table 1, fits a) and
c). For these fits we assumed that the tumor size at the start of virotherapy on day 15 was
given by the model curve for the untreated tumor, i.e. y0 = 126.237. The virus dose was
v0 = 2.

In the case of virotherapy, we fitted u(t) = x(t) + y(t) to data. The tumor size at
the beginning of therapy, y0, was obtained from the best-fit growth curve for the untreated
tumor. The values of parameters r,K, ε, are those obtained by fitting to the untreated tumor
(Fig. 3, also see [12]). The initial viral dose v0 was known from the experiment. The best
fit was obtained when the lower limit for the allowed values of parameters α and ω was
set to zero (Fig. 3) and the fit resulted in zero values. In terms of underlying biology one
cannot completely exclude production of free virus and its elimination. However, some in
vivo experiments ([28, 31]) suggest that the free virus population is not detectable, so one
can infer that α is very small.

The results of our fitting suggest that the existing 6 data points are insufficient to deter-
mine all five model parameters; specifically α and ω appear to be the most undetermined.
Thus, for example, when we chose the lower limits α = 0.9 day−1, ω = 0.3 day−1 in the range
of allowable parameter values, the minimization yielded those lower limits. The correspond-
ing best fit curve passes through error bars of data points and can possibly be considered
consistent with data, although χ2 is larger (see Table 1). We have chosen a lower limit for
ω of 0.3 day−1, because some in vitro experiments suggest that approximately 1/3 of virus
particles are inactivated per day [49]. A lower limit for α was chosen at 0.9 day−1 because if
α > 0.9 day−1 and ω = 0.3 day−1 the best fit curve no longer passes trough the error bars,
and we can consider those fits inconsistent with data.

When the values for α and ω are changed, the fits suggest that other parameters do not
change dramatically (see Table 1). Thus, if we do the fitting with α and ω limited from
below to some acceptable values, we can obtain the values of other parameters. For the sake
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fit κ δ α ω ρ χ2

a 0.0009590090 0.5115017 0 0 0.2145849 1.01547
b 0.0009592272 0.5140769 0.001 0.0001 0.2153509 1.01657
c 0.0005911312 1.1189519 0.9 0.3 0.141120 1.84888

Table 1: Values of model rate constants (in day−1) obtained by fitting to virotherapy data
(see Fig. 3). The last column presents the obtained χ2.

of exploring this model by numerical simulations, we chose the values for α and ω as a) the
limiting case when they are zero, b) small but not zero, (suggested by in vivo experiments
[28, 31]) and low χ2 ), and c) as large as the data allows (see discussion above).

Although based on the existing experimental data we cannot determine model parameters
accurately, model (3) is validated. This is not the case for the simplified model (4) which
yielded completely unacceptable fits.

5 Simulations

As discussed in Section 3 equilibria are important for the virotherapy outcome. However,
since significant therapeutic effects have to be achieved in a finite time period (1000 days
for the mice considered above), it is necessary to investigate the predictions of model (3) by
numerical simulations. Therefore, in the following we discuss results of numerical simulations
chosen to demonstrate significant implications for the effects of virotherapy. Throughout this
section we will use the parameters given in Table 1, and all quantities will be measured in
the units discussed in the previous section. We will start with a discussion of the singular
and singularly perturbed models corresponding to fits (a) and (b) respectively, in Table 1.

Fig. 4 shows the time profile for the total tumor burden u, as well as the populations of
infected cells and the virus (x and v respectively). As was shown in Fig. 2, if the initial dose
of virus is too low, the system rapidly approaches the equilibrium (K, 0, 0) corresponding
to therapeutic failure. This is illustrated in Fig. 4a with an initial virus dose of v(0) = 10.
There is a sharp initial increase in the number of infected tumor cells x(t) followed by a
decrease in the total tumor size u(t) = y(t) + x(t). However, as the viral load and the
number of infected cells decrease, the tumor rebounds, increasing to the level of carrying
capacity.

With an initial virus dose of v(0) = 226 the tumor drops below the clinically detectable
level u = 1 at t = 6.54, and is still undetectable at t = 1000 where u(1000) = 0.88 (see
Fig. 4b). Here v(0) ≈ 226 is the minimum level of initial virus needed for successful therapy.
In particular, if v(0) = 225, then u(1000) > 1.

Note that therapy can be successful even if the initial condition (y(0), 0, v(0)) is in the
basin of attraction of the equilibrium (K, 0, 0), as long as the tumor load remains unde-
tectable up to time t = 1000. In fact, if continued, the orbit shown in Fig. 4b approaches
(K, 0, 0) as t→∞. If the initial dose of virus is increased further to v(0) = 236 virotherapy
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Figure 4: (a) Prediction of model (3) with an initial virus dose of v(0) = 10. Parameter
values for r, K and ε are the same as in Fig. 3, and (y(0), x(0)) = (126.237, 0)). The
remaining parameters (κ, δ, α, ω, ρ) are from the fit a) of Table 1. (b) A higher dose of initial
virus leads to therapeutic success (see text).
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Figure 5: With an initial virus dose of v(0) = 236 the tumor size drops below the clinically
detectable level u = 1 at t = 6.50, and is still decreasing at t = 1000, when u(1000) = 0.01.
Conversely, if v(0) = 235, the tumor is undetectable but increasing at t = 1000. Parameter
values are the same as in Fig. 4.
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Figure 6: (a) The effect of administering ten doses of vdose = 10 units of virus every 25
days. (b) The effect of administering ten doses of vdose = 29 units of virus every 25 days.
Parameter values are the same as Fig. 4.

is not only successful, but the initial point is in the basin of attraction of the line L. In
this case the tumor is decreasing at time t = 1000 and keeps decreasing if the simulation is
continued (see Fig. 5).

Figure 6 illustrates the effect of administering the virus in several doses, rather than at
once. Fig. 6(a) shows the effect of ten doses of virus, such that each dose corresponds to
vdose = 10. The doses are administered every 25 days, so that the total viral load does not
increase over time. Each individual dose temporarily reduces the tumor size but the dosing
schedule does not lead to long term tumor eradication.

Similarly, Fig. 6b shows the effect of ten doses of vdose = 29 units of virus each, scheduled
every 25 days. In this case, the tumor is undetectable when t = 1000 (u(1000) < 1). The
number of doses and the time period between them does not determine whether therapy will
ultimately be successful or not. In general, for a fixed initial tumor size y(0), the viral load
must reach a certain minimal value for the therapy to be a success. This is analogous to the
results in Fig. 9 and 10 where we show which initial conditions lead to a successful therapy
and which do not (we discuss these figures in detail below).

The growth rate r has a large effect on the outcome of therapy. Tumor growth can be
slowed down by the use of inhibitors of DNA synthesis so that r can be significantly reduced.
As an example, we consider r equal to 1% of the fit a) value and find that v(0) = 12 is
sufficient for the tumor to be undetectable at t = 1000 (u(1000) < 1).Thus, as the rate of
tumor cell replication is slowed down, the total dose of virus necessary to control the tumor
decreases. However, with the smaller virus load it takes much longer for the tumor to shrink
in size, specifically, u(687.08) = 1.
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Figure 7: Decreasing the growth rate r has a large effect on the success of therapy. If r
is decreased by two orders of magnitude compared to Fig. 4 the dose of virus sufficient for
successful therapy is reduced to v(0) = 12.
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Figure 8: The behavior of the singularly perturbed system (α 6= 0 and ω 6= 0) is similar to
that of the singular system. Compare with Fig. 4b. Parameters are chosen according to fit
b) in Table 1.
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We next consider the effect of small, but nonzero virus production (α 6= 0) and elimination
(ω 6= 0) using the parameter values from fit b) in Table 1. Compared to the simulation results
in Fig. 4b, it is somewhat more difficult to achieve successful therapy requiring v(0) = 235.0
with u(1000) = 0.92 and u = 1 when t = 6.48. Other qualitative behavior regarding multiple
doses and decreasing r are also the same for the parameters in fit b), as in fit a). On the other
hand, increasing α relative to ω, and hence increasing the viral load can lead to a successful
result. This is because the relatively large rate of virus production ultimately leads to a
large viral load; this is analogous to the large initial viral load v(0) when using parameters
from fit a). We can therefore conclude that the behavior of the singularly perturbed model,
is very similar to that of the singular model.

In Fig. 9 we examine the effect of the initial tumor size on the final outcome of virotherapy.
The shades of gray indicate the final tumor size u(1000) as a function of the initial conditions
(y(0), 0, v(0)). Of particular note is that it is sometimes preferable to allow the tumor to
grow to a larger size before administering the virus. For example, for a fixed viral load of
v(0) = 210, if the initial tumor size is y(0) = 1600, then therapy fails. On the other hand, if
the tumor is larger with y(0) = 1900, then not only is the tumor undetectable at t = 1000,
but it is essentially eliminated with u(1000) = O(10−6. A potential explanation for this may
be that a higher tumor burden at the time of virus administration increases the number
of cells that are infected, leading to a higher population of tumor cells that can fuse with
surrounding cells (ρ) and produce additional virus particles (α).

In Fig. 9 we also observe an “island” of initial conditions where virus therapy is unsuc-
cessful, which is surrounded by initial conditions that lead to success, u(1000) < 1. We do
not currently have an explanation for why this isolated region exists.

In Fig. 10 we again consider the state of the system at t = 1000 but with the tumor
growth rate r reduced by a factor of ten. As noted in Fig. 7 when r is reduced, a lower
initial dose of virus is needed to achieve successful therapy; the curve where u(1000) = 1
has shifted to much lower values of v(0). In addition, the sharp upper boundary between
u(1000) = O(103) (black) and O(10−6 (white) that exists in Fig. 9 has shifted upward to
higher values of u, much larger than the level of saturation, and does not appear in the
figure.

Based on (3), one would expect that as the ability of infected cells to fuse with uninfected
tumor cells (ρ) increases, the tumor burden u(1000) and y(1000) should decrease. Therefore,
the results in Fig. 11 appear counterintuitive. The increase in u(1000), though, is not of great
significance for the therapy if ρ > 0.2, where 0.2 is approximately the value for ρ obtained
by fitting (see Table 1). We found that the equilibrium value x3 (see (9)) slightly decreases
with ρ while, of course, y3 is constant. However at the time t = 1000 we are still very far
from the equilibrium and the behavior is as shown in Fig. 11. Otherwise, when α is much
smaller then 0.6 and ρ sufficiently large so that the tumor burden achieves a minimum before
growing to the level of carrying capacity, this minimal tumor burden indeed decreases with
ρ. However the effect is quite insignificant for ρ smaller than 1.5. It is unlikely that values
of ρ higher than 1.5 are realistic.

Finally, in Fig. 12 we show that Eqs. (3) support damped oscillatory behavior. Fig. 12a
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Figure 9: The total tumor size u = y + x at t = 1000 as a function of the initial viral
load v(0) and the initial tumor size y(0) using the parameters from fit a). The black region
corresponds to initial conditions that lead to unsuccessful therapy such that u(1000) has
reached the level of the carrying capacity. The white region corresponds to very successful
therapy such that the tumor is almost eradicated with u(1000) = O(10−6). The dashed
curve identifies when the tumor is undetectable with u(1000) = 1.

Figure 10: Same as Fig. 9 but with the tumor growth rate r reduced by a factor of 10
(r = 0.02062134).
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Figure 11: The size of the tumor at t = 1000 as a function of the cell fusion rate ρ. Other
parameters are those of fit b) with (a) α = 0.9 and (b) α = 0.6. In each figure there is a value
of ρ such that the number of infected tumor cells x(1000) is maximal. For further increases
in ρ, x(1000) decreases. However, in (a) the total tumor size u(1000) and the uninfected
tumor size y(1000) are still increasing, while in (b) they are slightly decreasing.

shows strongly damped oscillations for parameter values similar to those of fit b). Only a
single maximum of u is visible given the scale but the corresponding numerical data clearly
exhibit very small amplitude oscillations. Fig.12b shows more dramatic oscillations but for
parameter values away from those given in Table 1.

6 Conclusion

The availability of novel therapeutic agents such a replicating viruses for cancer therapy
introduces a new paradigm in the therapy of these diseases. Therapeutic success depends
on the highly specific interaction between the oncolytic virus and the tumor cell population
with the dynamic considerations determining the outcome. We have presented a model to
try and understand different aspects of the effect of therapy with attenuated measles viruses
on tumor growth. In particular, we are able to provide partial answers to the questions
posed in the Introduction.

1) The initial tumor burden is important, but not crucial for the outcome of therapy.
Contrary to intuition, a larger initial tumor burden may facilitate therapy under certain
conditions, perhaps by increasing the efficiency of virus-tumor cell interactions. The
result is a higher pool of infected tumor cells that proceed to generate new virus
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Figure 12: (a) Strongly-damped oscillations using fit b) parameters with α = 0.6 and ω =
0.07. (b) Weakly-damped oscillations using κ = 0.01, ρ = 0.1, δ = 0.1, α = 0.5 and ω = 0.3.

particles and fuse surrounding tumor cells stopping their replication and ultimately
leading to their death.

2) It is not possible to cure the experimentally tested tumor xenografts with a therapeu-
tically achievable dose of virus. Our analysis suggests that 226 million virus particles
must be injected for the virus alone to eradicate the tumor. This is not possible in a
mouse unless the virus can be concentrated significantly without loss of titer. However,
if tumor growth can be slowed, the virus requirements decrease significantly and are
achievable with current technology. Such an approach may offer also an additional
margin of safety since the total dose of virus that will need to be injected is small and
hence the risk of adverse effects will be expected to decrease.

3) If optimal virus therapy is defined as the smallest effective dose of virus that can oper-
ationally control the tumor for the lifetime of the animal, then combining virotherapy
with strategies to slow tumor growth can significantly reduce the demands on the virus
load needed for cure.

4) Dose scheduling does not seem to play an important role on the outcome of therapy.
The main determinant of the therapeutic outcome is the total dose of virus that can
be administered.
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of cancer radiovirotherapy. Math Biosci, 199(1):55–78, 2006.

20



[13] D. Grote, S. J. Russell, T. I. Cornu, R. Cattaneo, R. Vile, G. A. Poland, and A. K. Field-
ing. Live attenuated measles virus induces regression of human lymphoma xenografts
in immunodeficient mice. Blood, 97(12):3746–54, 2001.

[14] K. W. Peng, G. J. Ahmann, L. Pham, P. R. Greipp, R. Cattaneo, and S. J. Rus-
sell. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood,
98(7):2002–7, 2001.

[15] K. W. Peng, C. J. TenEyck, E. Galanis, K. R. Kalli, L. C. Hartmann, and S. J. Russell.
Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer
Res, 62(16):4656–62, 2002.

[16] L. K. Phuong, C. Allen, K. W. Peng, C. Giannini, S. Greiner, C. J. TenEyck, P. K.
Mishra, S. I. Macura, S. J. Russell, and E. C. Galanis. Use of a vaccine strain of measles
virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic
agent against glioblastoma multiforme. Cancer Res, 63(10):2462–9, 2003.

[17] C. J. McDonald, C. Erlichman, J. N. Ingle, G. A. Rosales, C. Allen, S. M. Greiner,
M. E. Harvey, P. J. Zollman, S. J. Russell, and E. Galanis. A measles virus vaccine
strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res
Treat, 99(2):177–84, 2006.

[18] U. Schneider, V. von Messling, P. Devaux, and R. Cattaneo. Efficiency of measles virus
entry and dissemination through different receptors. J Virol, 76(15):7460–7, 2002.

[19] B. D. Anderson, T. Nakamura, S. J. Russell, and K. W. Peng. High cd46 receptor
density determines preferential killing of tumor cells by oncolytic measles virus. Cancer
Res, 64(14):4919–26, 2004.

[20] H. T. Ong, M. M. Timm, P. R. Greipp, T. E. Witzig, A. Dispenzieri, S. J. Russell, and
K. W. Peng. Oncolytic measles virus targets high cd46 expression on multiple myeloma
cells. Exp Hematol, 34(6):713–20, 2006.

[21] K. W. Peng, K. A. Donovan, U. Schneider, R. Cattaneo, J. A. Lust, and S. J. Russell.
Oncolytic measles viruses displaying a single-chain antibody against cd38, a myeloma
cell marker. Blood, 101(7):2557–62, 2003.

[22] A. D. Bucheit, S. Kumar, D. M. Grote, Y. Lin, V. von Messling, R. B. Cattaneo, and
A. K. Fielding. An oncolytic measles virus engineered to enter cells through the cd20
antigen. Mol Ther, 7(1):62–72, 2003.

[23] U. Schneider, F. Bullough, S. Vongpunsawad, S. J. Russell, and R. Cattaneo. Recom-
binant measles viruses efficiently entering cells through targeted receptors. J Virol,
74(21):9928–36, 2000.

21



[24] A. L. Hammond, R. K. Plemper, J. Zhang, U. Schneider, S. J. Russell, and R. Cattaneo.
Single-chain antibody displayed on a recombinant measles virus confers entry through
the tumor-associated carcinoembryonic antigen. J Virol, 75(5):2087–96, 2001.

[25] T. Nakamura, K. W. Peng, S. Vongpunsawad, M. Harvey, H. Mizuguchi, T. Hayakawa,
R. Cattaneo, and S. J. Russell. Antibody-targeted cell fusion. Nat Biotechnol, 22(3):331–
6, 2004.

[26] T. Nakamura, K. W. Peng, M. Harvey, S. Greiner, I. A. Lorimer, C. D. James, and
S. J. Russell. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat
Biotechnol, 23(2):209–14, 2005.

[27] E. M. Hadac, K. W. Peng, T. Nakamura, and S. J. Russell. Reengineering paramyxovirus
tropism. Virology, 329(2):217–25, 2004.

[28] K. W. Peng, S. Facteau, T. Wegman, D. O’Kane, and S. J. Russell. Non-invasive
in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med,
8(5):527–31, 2002.

[29] D. Dingli, K. W. Peng, M. E. Harvey, P. R. Greipp, M. K. O’Connor, R. Cattaneo,
J. C. Morris, and S. J. Russell. Image-guided radiovirotherapy for multiple myeloma
using a recombinant measles virus expressing the thyroidal sodium iodide symporter.
Blood, 103(5):1641–6, 2004.

[30] D. Dingli, B. J. Kemp, M. K. O’Connor, J. C. Morris, S. J. Russell, and V. J. Lowe.
Combined I-124 positron emission tomography/computed tomography imaging of nis
gene expression in animal models of stably transfected and intravenously transfected
tumor. Mol Imaging Biol, 8(1):16–23, 2006. 1536-1632.

[31] K. W. Peng, E. M. Hadac, B. D. Anderson, R. Myers, M. Harvey, S. M. Greiner, D. So-
effker, M. J. Federspiel, and S. J. Russell. Pharmacokinetics of oncolytic measles vi-
rotherapy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft
model. Cancer Gene Ther, 13(8):732–8, 2006.

[32] Y. Tao and Q. Guo. The competitive dynamics between tumor cells, a replication-
competent virus and an immune response. J Math Biol, 51(1):37–74, 2005.

[33] L. M. Wein, J. T. Wu, and D. H. Kirn. Validation and analysis of a mathematical model
of a replication-competent oncolytic virus for cancer treatment: implications for virus
design and delivery. Cancer Res, 63(6):1317–24, 2003.

[34] D. Dingli, S. J. Russell, and J. C. Morris. In vivo imaging and tumor therapy with the
sodium iodide symporter. J Cell Biochem, 90(6):1079–86, 2003.

[35] D. Dingli, R. M. Diaz, E. R. Bergert, M. K. O’Connor, J. C. Morris, and S. J. Russell.
Genetically targeted radiotherapy for multiple myeloma. Blood, 102(2):489–96, 2003.

22



[36] A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin, and G. P. Karev. Mathemati-
cal modeling of tumor therapy with oncolytic viruses: regimes with complete tumor
elimination within the framework of deterministic models. Biol Direct, 1:6, 2006.
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