
DIFFERENTIAL EQUATIONS



Chapter 1

Introduction and Basic

Terminology

Most of the phenomena studied in the sciences and engineering involve processes that change with
time. For example, it is well known that the rate of decay of a radioactive material at time t is
proportional to the amount of material present at time t. In mathematical terms this says that

dy

dt
= ky, k a negative constant (1)

where y = y(t) is the amount of material present at time t.

If an object, suspended by a spring, is oscillating up and down, then Newton’s Second Law of
Motion (F = ma) combined with Hooke’s Law (the restoring force of a spring is proportional to the
displacement of the object) results in the equation

d2y

dt2
+ k2y = 0, k a positive constant (2)

where y = y(t) denotes the position of the object at time t.

The basic equation governing the diffusion of heat in a uniform rod of finite length L is given
by

∂u

∂t
= k2 ∂2u

∂x2
(3)

where u = u(x, t) is the temperature of the rod at time t at position x on the rod.

Each of these equations is an example of what is known as a differential equation.

DIFFERENTIAL EQUATION A differential equation is an equation which contains an un-
known function together with one or more of its derivatives.

Here are some additional examples of differential equations.

Example 1.
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(a) y′ =
x2y − y

y + 1
.

(b) x2 d2y

dx2
− 2x

dy

dx
+ 2y = 4x3.

(c)
∂2u

∂x2
+

∂2u

∂y2
= 0 (Laplace’s equation)

(d)
d3y

dx3
− 4

d2y

dx2
+ 4

dy

dx
= 3e−x.

TYPE As suggested by these examples, a differential equation can be classified into one of two
general categories determined by the type of unknown function appearing in the equation. If the
unknown function depends on a single independent variable, then the equation is an ordinary dif-
ferential equation; if the unknown function depends on more than one independent variable, then
the equation is a partial differential equation.

The differential equations (1) and (2) are ordinary differential equations, and (3) is a partial
differential equation. In Example 1, equations (a), (b) and (d) are ordinary differential equations
and equation (c) is a partial differential equation.

ORDER The order of a differential equation is the order of the highest derivative of the unknown
function appearing in the equation.

Equation (1) is a first order equation, and equations (2) and (3) are second order equations.
In Example 1, equation (a) is a first order equation, (b) and (c) are second order equations, and
equation (d) is a third order equation.

The obvious question that we want to consider is that of “solving” a given differential equation.

SOLUTION A solution of a differential equation is a function defined on some interval I (in
the case of an ordinary differential equation) or on some domain D in two or higher dimensional
space (in the case of a partial differential equation) with the property that the equation reduces to
an identity when the function is substituted into the equation.

Example 2. Given the second-order ordinary differential equation

x2 y′′ − 2x y′ + 2y = 4x3. [Example 1 (b)]

Show that:

(a) y(x) = x2 + 2x3 is a solution.

(b) z(x) = 2x2 + 3x is not a solution.

SOLUTION (a) The first step is to calculate the first two derivatives of y.

y = x2 + 2x3,

y′ = 2x + 6x2,

y′′ = 2 + 12x.

2



Next, we substitute y and its derivatives into the differential equation.

x2(2 + 12x) − 2x(2x + 6x2) + 2(x2 + 2x3) ?= 4x3.

Simplifying the left-hand side, we get

2x2 + 12x3 − 4x2 − 12x3 + 2x2 + 4x3 ?= 4x3 and 4x3 = 4x3.

The equation is satisfied; y = x2 + 2x3 is a solution.

(b) The first two derivatives of z are:

z = 2x2 + 3x,

z′ = 4x + 3,

z′′ = 4.

Substituting into the differential equation, we have

x2(4) − 2x(4x + 3) + 2(2x2 + 3x) ?= 4x3.

Simplifying the left-hand side, we get

4x2 − 8x2 − 6x + 4x2 + 6x = 0 6= 4x3.

The function z = 2x2 + 3x is not a solution of the differential equation. �

Example 3. Show that u(x, y) = cos x sinh y + sin x cosh y is a solution of Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0.

SOLUTION The first step is to calculate the indicated partial derivatives.

∂u

∂x
= − sin x sinh y + cos x cosh y,

∂2u

∂x2
= − cos x sinh y − sin x cosh y,

∂u

∂y
= cos x cosh y + sin x sinh y,

∂2u

∂y2
= cos x sinh y + sin x cosh y.

Substituting into the differential equation, we find that

(− cos x sinh y − sin x cosh y) + (cos x sinh y + sin x cosh y) = 0

and the equation is satisfied; u(x, y) = cos x sinh y+sin x cosh y is a solution of Laplace’s equation.
�

You know from your experience in previous mathematics courses that the calculus of functions of
several variables (limits, graphing, differentiation, integration and applications) is more complicated
than the calculus of functions of a single variable. By extension, therefore, you would expect that
the study of partial differential equations would be more complicated than the study of ordinary
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differential equations. This is indeed the case! Since the intent of this material is to introduce some
of the basic theory and methods for differential equations, we shall confine ourselves to ordinary
differential equations from this point forward. Hereafter the term differential equation shall be
interpreted to mean ordinary differential equation. �

We begin by considering the simple first-order differential equation

y′ = f(x)

where f is some given function. In this case we can find y simply by integrating:

y = y(x) =
∫

f(x) dx

y = = F (x) + C

where F is an antiderivative of f and C is an arbitrary constant. Not only did we find a
solution of the differential equation, we found a whole family of solutions each member of which is
determined by assigning a specific value to the constant C. In this context, the arbitrary constant
is called a parameter and the family of solutions is called a one-parameter family.

Remark In calculus you learned that not only is each member of the family y = F (x) + C a
solution of the differential equation but this family actually represents the set of all solutions of the
equation; that is, there are no other solutions outside of this family. �

Example 4. The differential equation

y′ = 3x2 − sin 2x

has the one-parameter family of solutions

y(x) = x3 +
1
2

cos 2x + C

=
∫ (

3x2 − sin 2x
)

dx = x3 + 1
2 cos 2x + C.

�

In a similar manner, if we are given a second order equation of the form

y′′ = f(x)

then we can find y by integrating twice with each integration step producing an arbitrary constant
of integration.

Example 5. If
y′′ = 6x + 4e2x,

then
y′ =

∫ (
6x + 4e2x

)
dx = 3x2 + 2e2x + C1

and

y =
∫ (

3x2 + 2e2x + C1

)
dx = x3 + e2x + C1x + C2, C1, C2 arbitrary constants.
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The set of functions
y = x3 + e2x + C1x + C2

is a two-parameter family of solutions of the differential equation

y′′ = 6x + 4e2x.

n-PARAMETER FAMILY OF SOLUTIONS The examples given above are very special
cases. In general, to find a set of solutions of an n-th order differential equation we would expect,
intuitively, to ”integrate” n times with each integration step producing an arbitrary constant of
integration. As a result, we expect an n-th order differential equation to have an n-parameter family
of solutions.

SOLVING A DIFFERENTIAL EQUATION To solve an n-th order differential equation
means to find an n-parameter family of solutions. It is important to understand that the two n’s
here are the same. For example, to solve a fourth-order differential equation we need to find a
four-parameter family of solutions.

Example 6. Show that y = C1x
2 + C2x + 2x3 is a two-parameter family of solutions of

x2y′′ − 2xy′ + 2y = 4x3.

SOLUTION We calculate the first two derivatives of y and then substitute into the differential
equation:

y = C1x
2 + c2x + 2x3

y′ = 2C1x + C2 + 6x2,

y′′ = 2C1 + 12x;

x2 (2C1 + 12x) − 2x
(
2C1x + C2 + 6x2

)
+ 2

(
C1x

2 + C2x + 2x3
) ?= 4x3.

Simplifying the left-hand side and re-arranging the terms, we get

C1

(
2x2 − 4x2 + 2x2

)
+ C2 (−2x + 2x) + 12x3 − 12x3 + 4x3 ?= 4x3

C1(0) + C2(0) + 4x3 ?= 4x3

4x3 = 4x3

Thus, for any two constants C1, C2, the function y = C1x
2 + C2x + 2x3, is a solution of the

differential equation. The set of functions y = C1x
2 + C2x + 2x3 is a two-parameter family of

solutions of the equation. �

GENERAL SOLUTION For most of the equations that we will study in this course, an n-
parameter family of solutions of a given n-th order equation will represent the set of all solutions of
the equation. In such cases, the term general solution is often used in place of n-parameter family
of solutions.

Solutions which are not included in the n-parameter family of solutions are called singular solu-
tions. Some examples are given in the Exercises. �
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PARTICULAR SOLUTION If specific values are assigned to the arbitrary constants in the
general solution of a differential equation, then the resulting solution is called a particular solution
of the equation.

Example 7. y = C1x
2 + C2x + 2x3 is the general solution of the second order differential equation

x2y′′ − 2xy′ + 2y = 4x3.

Setting C1 = 2 and C2 = 3, we get the particular solution y = 2x2 + 3x + 2x3. �

The Differential Equation of an n-Parameter Family: If we are given an n-parameter family
of curves, then we can regard the family as the general solution of an nth-order differential equation
and attempt to find the equation. The equation that we search for, called the differential equation
of the family, should be free of the parameters (arbitrary constants), and its order should equal the
number of parameters. The strategy for finding the differential equation of a given n-parameter
family is to differentiate the equation n times. This produces a system of n + 1 equations which can
be used to eliminate the arbitrary constants.

Example 8. Given the one-parameter family y = Cx2 + 3. Find the differential equation of the
family.

SOLUTION Since we have a one-parameter family, we are looking for a first order equation. Dif-
ferentiating the given equation, we obtain

y′ = 2Cx

We can solve this equation for C to get C =
y′

2x
. Substituting this into the given equation gives

y =
(

y′

2x

)
x2 + 3 which simplifies to xy′ − 2y + 6 = 0.

This is the differential equation of the given family. �

Example 9. Find the differential equation of the two-parameter family

y =
C1

x
+ C2.

SOLUTION We are looking for a second order differential equation. Differentiating twice, we obtain
the equations

y′ = −C1

x2
and y′′ =

2C1

x3

Solving each of these equations for C1 we get

C1 = −x2y′ and C1 = 1
2 x3y′′.

Therefore
1
2 x3y′′ = −x2y′ which simplifies to xy′′ + 2y′ = 0. �
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As we noted above, we can obtain a particular solution of an nth order differential equation
simply by assigning specific values to the n constants in the general solution. However, in typical
applications of differential equations you will be asked to find a solution of a given equation that
satisfies certain preassigned conditions.

Example 10. Find a solution of
y′ = 3x2 − 2x

that passes through the point (1, 3).

SOLUTION In this case, we can find the general solution by integrating:

y =
∫ (

3x2 − 2x
)

dx = x3 − x2 + C.

The general solution is y = x3 − x2 + C.

To find a solution that passes through the point (2, 6), we set x = 2 and y = 6 in the general
solution and solve for C:

6 = 23 − 22 + C = 8 − 4 + C which implies C = 2.

Thus, y = x3 − x2 + 2 is a solution of the differential equation that satisfies the given condition.
In fact, it is the only solution that satisfies the condition since the general solution represented all
solutions of the equation and the constant C was uniquely determined. �

Example 11. Find a solution of
x2y′′ − 2xy′ + 2y = 4x3

which passes through the point (1, 4) with slope 2.

SOLUTION The general solution of the differential equation is

y = C1x
2 + C2x + 2x3.

Setting x = 1 and y = 4 in the general solution yields the equation

C1 + C2 + 2 = 4 which implies C1 + C2 = 2.

The second condition, slope 2 at x = 1, is a condition on y′. We want y′(1) = 2. We calculate
y′:

y′ = 2C1x + C2 + 6x2,

and then set x = 1 and y′ = 2. This yields the equation

2C1 + C2 + 6 = 2 which implies 2C1 + C2 = −4.

Now we solve the two equations simultaneously:

C1 + C2 = 2

2C1 + C2 = −4
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We get: C1 = −6, C2 = 8. A solution of the differential equation satisfying the given conditions is
y(x) = −6x2 + 8x + 2x3. Moreover, this is the only solution that satisfies the conditions because,
again, the values of the C’s were uniquely determined. �

INITIAL CONDITIONS Conditions such as those imposed on the solutions in Examples 1 and
2 are called initial conditions. This term originated with applications where processes are usually
observed over time, starting with some initial state at time t = 0.

Example 12. The position y(t) of a weight suspended on a spring and oscillating up and down is
governed by the differential equation

y′′ + 9y = 0.

(a) Show that the general solution of the differential equation is: y(t) = C1 sin 3t + C2 cos 3t.

(b) Find a solution that satisfies the initial conditions y(0) = 1, y′(0) = −2.

SOLUTION

(a)
y = C1 sin 3t + C2 cos 3t

y′ = 3C1 cos 3t − 3C2 sin 3t

y′′ = −9C1 sin 3t − 9C2 cos 3t

Substituting into the differential equation, we get

y′′ + 9y = (−9C1 sin 3t − 9C2 cos 3t) + 9 (C1 sin 3t + C2 cos 3t) = 0.

Thus y(t) = C1 sin 3t + C2 cos 3t is the general solution.

(b) Applying the initial conditions, we obtain the pair of equations

y(0) = 1 = C1 sin 0 + C2 cos 0 = C2 which implies C2 = 1,

y′(0) = −2 = 3C1 cos 0 − 3C2 sin 0 which implies C1 = −2
3 .

A solution which satisfies the initial conditions is: y(t) = −2
3

sin 3t + cos 3t. �

Any n-th order differential equation with independent variable x and unknown function y can
be written in the form

F
(
x, y, y′, y′′, . . . , y(n−1), y(n)

)
= 0. (4)

by moving all the non-zero terms to the left-hand side. Since we are talking about an n-th order
equation, y(n) must appear explicitly in the expression F . Each of the other arguments may or
may not appear explicitly.
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n-th ORDER INITIAL-VALUE PROBLEM An n-th order initial-value problem consists of
an n-th order differential equation

F (x, y, y′, y′′, . . . , y(n) = 0

together with n conditions of the form

y(c) = k0, y′(c) = k1, y′′(c) = k2, . . . , y(n−1)(c) = kn−1.

It is important to understand that to be an n-th order initial-value problem there must be n

conditions (same n) of exactly the form indicated in the definition. For example, the problem:

EXISTENCE AND UNIQUENESS The fundamental questions in any course on differential
equations are:

(1) Does a given initial-value problem have a solution? That is, do solutions to the problem exist?

(2) If a solution does exist, is it unique ? That is, is there exactly one solution to the problem or
is there more than one solution.

The initial-value problems in Examples 1, 2, and 3 each had a unique solution; values for the
arbitrary constants in the general solution were uniquely determined.

Example 13. The function y = x2 is a solution of the differential equation y′ = 2
√

y and
y(0) = 0. Thus the initial-value problem

y′ = 2
√

y; y(0) = 0.

has a solution. However, y ≡ 0 also satisfies the differential equation and y(0) = 0. Thus, the
initial-value problem does not have a unique solution. In fact, for any positive number a, the
function

y(x) =

{
0, x ≤ a

(x − a)2, x > a

is a solution of the initial-value problem. �

a
x

y

Example 14. The one-parameter family of functions y = Cx is the general solution of

y′ =
y

x
.

There is no solution that satisfies y(0) = 1; the initial-value problem

y′ =
y

x
, y(0) = 1

does not have a solution. �
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The questions of existence and uniqueness of solutions will be addressed in the specific cases of
interest to us. A general treatment of existence and uniqueness of solutions of initial-value problems
is beyond the scope of this survey.

Exercises

1. Classify the following differential equations with respect to type (i.e., ordinary or partial) and
order.

(a) (y′)2 + xyy′ = sin x.

(b)
∂2u

∂x2
+ 2

∂2u

∂x∂y
+

∂2u

∂y2
= 0.

(c)
(

d2y

dx2

)3

+ xy2 = x.

(d)
d2y

dx2
− 2y

dy

dx
+ xy2 =

d3

dx3
[e−2x].

For each differential equation determine whether or not the given functions are solutions.

2.
d3y

dx3
+

dy

dx
= ex; y(x) = 1 + sin x + 1

2ex, z(x) = 2 cos x + 1
2ex.

3. xy′′ + y′ = 0; y1(x) = ln (1/x), y2(x) = x2.

4. (x + 1)y′′ + xy′ − y = (x + 1)2; y(x) = e−x + x2 + 1, z(x) = x2 + 1.

5.
∂2u

∂x2
+

∂2u

∂y2
= 0; u1(x, y) = ln

√
x2 + y2, u2(x, y) = x3 − 3xy2.

6. y′′ − y = 2 − x; y(x) = e−x + x − 2, z(x) = sinh x + x − 2.

Determine values of r, if possible, so that the given differential equation has a solution of the
form y = erx.

7. y′′ + 2y′ − 8y = 0.

8. y′′ − 6y′ + 9y = 0.

9. y′′′ − 4y′′ + 5y′ − 2y = 0.

Determine values of r, if possible, so that the given differential equation has a solution of the
form y = xr.

10. x2 d2y

dx2
− 2x

dy

dx
+ 2y = 0.

11. x2y′′ − 3xy′ + 4y = 0.

12. (a) Show that each member of the two-parameter family of functions

y = C1e
2x + C2e

−x

is a solution of the differential equation y′′ − y′ − 2y = 0.
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(b) Find a solution of the initial value problem y′′ − y′ − 2y = 0; y(0) = 2, y′(0) = 1.

13. (a) Show that each member of the one-parameter family of functions

y =
1

Cex + 1

is a solution of the differential equation y′ + y = y2.

(b) Find a solution of the initial value problem y′ + y = y2; y(1) = −1.

14. (a) Show that each member of the two-parameter family of functions

y = C1x
2 + C2x

2 ln x

is a solution of the differential equation x2y′′ − 3xy′ + 4y = 0.

(b) Find a solution of the initial value problem x2y′′ − 3xy′ + 4y = 0; y(1) = 0, y′(1) = 1.

(c) Is there a member of the two-parameter family which satisfies the initial condition y(0) =
y′(0) = 0?

(d) Is there a member of the two-parameter family which satisfies the initial condition y(0) =
0, y′(0) = 1? If not, why not?

15. Each member of the two-parameter family of functions

y = C1 sin x + C2 cos x

is a solution of the differential equation y′′ + y = 0.

(a) Determine whether there are one or more members of this family that satisfy the condi-
tions

y(0) = 0, y(π) = 0.

(b) Show that the zero function, y ≡ 0, is the only member of the family that satisfies the
conditions

y(0) = 0, y(π/2) = 0.

16. Given the differential equation x(y′)2 − 2yy′ + 4x = 0.

(a) Show that the one-parameter family y =
x2 + C2

C
is the general solution of the equation

(b) Show that each of y = 2x and y = −2x is a solution of the equation. Note that
these functions are not included in the general solution of the equation; they are singular
solutions of the equation.

Find the differential equation of the given family.

17. y = Cx2 + 3.

18. y = Ce2x + e−2x

19. y = C1e
x + C2e

−2x.
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20. y = (C1 + C2x)e2x

21. y = C1x + C2x
2.

22. y = C1x + C2x
2 + C3x

3.
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