Hall's Theorem for Propositional Formulas

The set of propositional connectives is $C = \{\neg, \lor, \land, \rightarrow, \leftrightarrow\}$. The *arities* of these connectives are 1 for negation \neg , and 2 for all the others. The set of propositional variables is $\mathcal{P} = \{p, q, r, \ldots\}$. A *word* is a non-empty string of symbols taken from $C \cup \mathcal{P}$. Certain words are formulas, $\lor pq$, others are not, e.g., $p \lor q$. Note, that we are going to use Polish notation which is due to J. Lukasiewicz.

The following is an algorithm due to P. Hall. First, we define the *length* l(w) of a word w as the number of characters in it. E.g., if $w = x_1 x_2 \dots x_n$ then l(w) = n. Thus, l(ww') = l(w) + l(w').

Next, we define the valency v(w) of a word w. There are two types of words of length one, connectives and variables. If c is a connective then we define v(c) = (-n+1) where n is the arity of c. Thus, $v(\neg) = 0$ and v(c) = -1 for all the other connectives. If p is a variable then we define v(p) = 1. Then, if $w = x_1 \dots x_n$ we define $v(w) = v(x_1) + \dots + v(x_n)$. Again, v(ww') = v(w) + v(w').

For example, $v(\lor pq) = v(\lor) + v(p) + v(q) = (-2+1) + 1 + 1 = 1$.

We may think that we input from right to left the variables q and p which yields valency 2 and then the \lor absorbs the two variables yielding a proper formula of valency 1.

Now prove the following theorem by induction on l(w):

Theorem. The word w is a product of k formulas, i.e.,

$$w = w_1 \dots w_k$$

if and only if

$$v(w) = k$$
 and $v(u) > 0$ for every right segment u of w

Corollary. A word w is a formula if and only if v(w) = 1 and v(u) > 0 for every right segment u of w. We also have the

Formation Lemma. Assume that w is a product of formulas w_i, w'_i :

$$w = w_1 \dots w_n = w'_1 \dots w'_m$$

then m = n and $w_i = w'_i$.