Closure Operators and Galois Connections

- 1. A collection C of subsets of a set A is a *closure system* if it is closed under arbitrary intersections: If $S \subseteq C$ then $\bigcap S \in C$. In particular, one has that $A \in C$, as the empty intersection. $C : \mathcal{P} \to \mathcal{P}$ is called a *closure operator* on the set A if it is *extensive*, *monotone* and *idempotent*, i.e., one has for subsets B of A:
 - (a) $B \subseteq C(B)$;
 - (b) if $B_1 \subseteq B_2$ then $C(B_1) \subseteq (C(B_2);$
 - (c) C(B) = C(C(B)).

Show : For every closure system \mathcal{C} , $C(B) = \bigcap \{M | M \supseteq B, M \in \mathcal{C}\}$ is a closure operator, and for every closure operator C, the system $\mathcal{C} = \{M | M = C(M)\}$ is a closure system and this defines a bijection between closure systems and closure operators.

- 2. Let (S, \leq) and (T, \leq) be posets. A pair (g, d) of functions $g: S \to T, d: T \to S$ is called a *Galois* connection if (i) g and d are monotone; (ii) $g(s) \geq t$ iff $s \geq d(t)$ holds for all $s \in S$ and $t \in T$. Prove:
 - (a) The upper adjoint g preserves all infima in S and the lower adjoint d all suprema in T.
 - (b) g is surjective iff $g \circ d = id_T$ iff d is injective.
 - (c) g is injective iff $d \circ g = \mathrm{id}_S$ iff d is surjective.
 - (d) $c = g \circ d : T \to T$ is a closure operator on (T, \leq) , while $k = d \circ g : S \to S$ is a kernel operator on (S, \leq) , that is, k is intensive $(s \geq k(s))$, monotone and idempotent. Note: $g \circ d \circ g = g, d \circ g \circ d = d$.
 - (e) Let $R \subseteq A \times B$ be a binary relation. Then:
 - $\text{i. } g: (\mathcal{P}(A), \subseteq^*) \to (\mathcal{P}(A), \subseteq), X \mapsto \{y | (x, y) \in R \text{ for all } x \in X\} = X^*,$
 - $\text{ii. } d: (\mathcal{P}(B), \subseteq) \to (\mathcal{P}(A), \subseteq^*), Y \mapsto \{x | (x, y) \in R \text{ for all } y \in Y\} = Y^*.$

defines a Galois connection.

Examples?