June 21, 2008
Name:

1. Express in the form $P \rightarrow Q$ or $Q \rightarrow P$ the following statements:
a) P in case that $\mathrm{Q} \cdot Q \rightarrow P$
b) P only if $\mathrm{Q} P \rightarrow Q$
c) P if $\mathrm{Q} . Q \rightarrow P$
d) P is necessary for $\mathrm{Q} . Q \rightarrow P$
e) P is sufficient for $\mathrm{Q} . P \rightarrow Q$
f) P whenever $\mathrm{Q} Q \rightarrow P$
2. State whether the formula is a tautology or not.
a. $(p \rightarrow(q \rightarrow r)) \leftrightarrow((p \wedge q) \rightarrow r)$ tautology: $(p \rightarrow(q \rightarrow r)) \leftrightarrow \neg p \vee(\neg q \vee r) \leftrightarrow \neg p \vee \neg q \vee r \leftrightarrow \neg(p \wedge q) \vee r \leftrightarrow p \wedge q \rightarrow r$
b. $((p \wedge \neg p) \rightarrow q)$ tautology, $((p \wedge \neg p) \rightarrow q) \leftrightarrow F \rightarrow q$ is a tautology
c. $(p \rightarrow(q \rightarrow r)) \rightarrow((p \rightarrow q) \rightarrow r))$ not a tautology: $p \equiv F, r \equiv F$ makes the right hand side false, but the left-hand side true.
d. $(((p \vee q) \wedge \neg p) \rightarrow q$ tautology, cannot be made false: in order to be false we need $q \equiv F$ and $(p \vee q) \wedge \neg p$ be true. Thus $q \equiv F$ but then $p \equiv T$ and then $(p \vee q) \wedge \neg p$ is false.
3. Determine whether the following arguments are valid or invalid. $r \equiv$ raining, $h \equiv$ stay home; $c(x) \equiv x$ is citizen; $v(x) \equiv x$ can vote
a. If it is raining, then I will stay home. It is not raining. Thus I will not stay home.
$r \rightarrow h, \neg r$; thus $\neg h$ false
b. If it is raining, then I will stay home. I am not staying home. Thus it is not raining $r \rightarrow h, \neg h$; thus $\neg r$ correct
c. I will stay home only if it is raining. It is not raining. Thus I will not stay home. $h \rightarrow r, \neg r$; thus $\neg h$ correct.
d. Only citizens can vote. Paul cannot vote. So he is not a citizen.
$v(x) \rightarrow c(x), \neg v($ paul); thus $\neg c$ (paul) false (paul might be too young to vote)
4. True or false:
a. A function f from the set A to the set B is injective (or one-tone) if $f(x) \neq f(y)$ implies $x \neq y$. incorrect
b. A function f from the set A to the set B is injective (or one-tone) if $f(x) \neq f(y)$ in case that $x \neq y$. correct
5. Find a function $f: \mathrm{N} \rightarrow \mathrm{N}$ which is injective but not surjective and a function $g: \mathrm{N} \rightarrow \mathrm{N}$ which is surjective but not injective. Solution: $f(n)=2 n$ is an injective function but not surjective. $g(n)=$ number of primes that divide n is surjective but not injective
6. Let A be a finite set. Say A has five elements.
a. Can you find a function $g: A \rightarrow A$ which is injective but not surjective? Explain your answer.
b. Can you find a function $f: A \rightarrow A$ which is surjective but not injective? Explain your answer. There is no such function. A functions on a finite set of n-many elements is injective if different elements have different images. thus there must be n-many images. thus f is surjective. And if f is surjective then there are n-many
images thus no two elements can have the same image. thus f is surjective.
7. Are there any subsets of the empty set \emptyset ? yes, the empty set is a subset of the empty set.
8. Let B be a set such that for every set A you have that $A \cup B=A$. What can you say about $B ? B=\emptyset$
9. What is the number of elements of the set $\{\emptyset,\{\{\emptyset\}\}\}$? 4
10. State the Method of Mathematical Induction and prove by induction that for $n \geq 1$ one has that $n<2^{n}$. For $n=0$ we have $0<2^{0}=1$; Assume that $n<2^{n}$. Then $2 n<2 \cdot 2^{n}=2^{n+1}$. But then $n<2 n<2^{n+1}$
