Name:

- **1**. Express in the form $P \rightarrow Q$ or $Q \rightarrow P$ the following statements:
 - a) P in case that Q. $Q \rightarrow P$ b) P only if Q $P \rightarrow Q$ c) P if Q. $Q \rightarrow P$ d) P is necessary for Q. $Q \rightarrow P$
 - e) P is sufficient for Q. $P \rightarrow Q$ f) P whenever Q $Q \rightarrow P$
- **2**. State whether the formula is a tautology or not.
 - **a**. $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$ tautology: $(p \to (q \to r)) \leftrightarrow \neg p \lor (\neg q \lor r) \leftrightarrow \neg p \lor \neg q \lor r \leftrightarrow \neg (p \land q) \lor r \leftrightarrow p \land q \to r$
 - **b**. $((p \land \neg p) \rightarrow q)$ **tautology**, $((p \land \neg p) \rightarrow q) \leftrightarrow F \rightarrow q$ is a tautology
 - **c.** $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow r))$ not a tautology: $p \equiv F, r \equiv F$ makes the right hand side false, but the left-hand side true.
 - **d**. $(((p \lor q) \land \neg p) \rightarrow q \text{ tautology}, \text{ cannot be made false: in order to be false we need <math>q \equiv F$ and $(p \lor q) \land \neg p$ be true. Thus $q \equiv F$ but then $p \equiv T$ and then $(p \lor q) \land \neg p$ is false.
- **2**. Determine whether the following arguments are valid or invalid. $r \equiv raining, h \equiv stay$ home; $c(x) \equiv x$ is citizen; $v(x) \equiv x$ can vote
 - **a**. If it is raining, then I will stay home. It is not raining. Thus I will not stay home. $r \rightarrow h, \neg r$; thus $\neg h$ false
 - **b**. If it is raining, then I will stay home. I am not staying home. Thus it is not raining $r \rightarrow h, \neg h$; thus $\neg r$ correct
 - **c**. I will stay home only if it is raining. It is not raining. Thus I will not stay home. $h \rightarrow r, \neg r$; thus $\neg h$ correct.
 - **d**. Only citizens can vote. Paul cannot vote. So he is not a citizen. $v(x) \rightarrow c(x), \neg v(paul)$; thus $\neg c(paul)$ false (paul might be too young to vote)
- **3**. True or false:
 - **a**. A function f from the set A to the set B is injective (or one-tone) if $f(x) \neq f(y)$ implies $x \neq y$. incorrect
 - **b**. A function f from the set A to the set B is injective (or one-tone) if $f(x) \neq f(y)$ in case that $x \neq y$. correct
- **4**. Find a function $f : \mathbb{N} \to \mathbb{N}$ which is injective but not surjective and a function $g : \mathbb{N} \to \mathbb{N}$ which is surjective but not injective. Solution: f(n) = 2n is an injective function but not surjective. g(n) = number of primes that divide *n* is surjective but not injective
- **5**. Let *A* be a **finite** set. Say *A* has five elements.
 - **a**. Can you find a function $g : A \to A$ which is injective but not surjective? Explain your answer.
 - **b**. Can you find a function $f : A \rightarrow A$ which is surjective but not injective? Explain your answer. There is no such function. A functions on a finite set of n -many elements is injective if different elements have different images. thus there must be n -many images. thus f is surjective. And if f is surjective then there are n -many

images thus no two elements can have the same image. thus *f* is surjective.

- **6**. Are there any subsets of the empty set \emptyset ? yes, the empty set is a subset of the empty set.
- **7**. Let *B* be a set such that for every set *A* you have that $A \cup B = A$. What can you say about B? $B = \emptyset$
- **8**. What is the number of elements of the set $\{\emptyset, \{\{\emptyset\}\}\}$?4
- **9**. State the Method of Mathematical Induction and prove by induction that for $n \ge 1$ one has that $n < 2^n$. For n = 0 we have $0 < 2^0 = 1$; Assume that $n < 2^n$. Then $2n < 2 \cdot 2^n = 2^{n+1}$. But then $n < 2n < 2^{n+1}$