Final Math 3336

This final is worth **200** points. Each problem is worth **20** points. You are not allowed to use any books or notes.

1. Solve for the integers modulo 7:

$$\begin{array}{rcl} 2x - 3y & = & 2 \\ x + y & = & 4 \end{array}$$

- 2. Prove that $2^n > n^2$ if n is an integer greater than 4.
- 3. Let F be the function such that F(n) is the sum of the first n positive integers. Give a recursive definition of F(n).
- 4. Define the equivalence relation \sim_f for a function $f: A \to B$. In particular, do this for the function $f: \{1, 2, \dots, 20\} \to \mathbb{N}$ where f(k) is the number of factors in the unique prime factorization of k. For example, f(8) = 3. What are the equivalence classes for the associated equivalence relation?
- 5. (a) Let R be a relation on the set A. How is R ∘ R defined?
 (b) Prove that R is transitive in case that R ⊆ R ∘ R.
- 6. Find the smallest equivalence relation on the set $\{a, b, c, d, e\}$ containing the relation $R = \{(a, b), (a, c), (d, e)\}$
- 7. Define that \leq is a partial order on the set A. Give an example of a partial order which is not total.
- 8. Does the set N of non-negative natural numbers with divisibility as partial order have a maximum and/or a minimum? Explain!
- 9. (a) Define that \mathbb{L} is a lattice.
 - (b) Explain why the set \mathbb{N} with divisibility as order is a lattice.
- 10. Let E and F be equivalence relations on the set $A = \{a, b, c, d, e, f, g, h\}$ where the partition for E is given by

$$\pi_E = \{\{a, g, h\}, \{b, c, d\}, \{e\}, \{f, g\}\}\$$

and the partition for F is

$$\pi_F = \{\{a, f, g\}, \{b, d, g, h\}, \{c, e\}\}$$

Find the partition of $E \lor F$ and $E \land F$.