
Linear Maps, Matrices and Linear Sytems

Let T : U → V be linear. We defined kerT  x|x ∈ U,Tx  0̸ and
imT  y|Tx  y for some x ∈ U. According to the dimension equality we have that
dimkerT  dimimT  dimU  n.We have that the linear map T is one-one or
injective iff kerT  0. If U  V then T is injective iff T is surjective (onto). This is an
easy consequence of the dimension equality.
For any linear map T we have a matrix representation. The matrix A of T depends on
the chosen bases  and  of U and V, repectively:

MatT;1,2,… ,n;1,2,…m  aij where T j   i1
m aiji, j  1,…n; i  1,…m

The matrix for T is an m  n matrix where dimV  m, dimU  n. Each of the n
columns of A contain the m components of T j with respect to the basis j.
Let x be a vector in U. If
x   j1

n xj j, then Tx  T j1
n xj j   j1

n xjT j   j1
n xj i1

m aiji   i1
m  j1

n aijxji   j1
m yii

where
yi   j1

n aijxj

Thus

a11 a12 … … … a1n

a21 a22 … … … a2n

… …  … … …

… … …  … …

am1 am2 … … … amn

x1

x2

…

…

…

xn



y1

y2

…

…

ym

Thus the map Tx  y has a coordinate representation as Ax  y. with this in mind,
we see that

dimimT  dimcolumnspace A  s, dimkerT  dimsolution space for Ax  0  n − r
where r is the row rank of A. By the dimension equality we have that s  n − r  n
which is s  r that is row rankcolumn rank.
Example 1:

Let U  3,V  4 then the matrix A 

2 8 −3
1 4 1
−5 2 2
1 −3 8

stands for the linear map T
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where T
1
0
0



2
1
−5
1

,T
0
1
0



8
4
2
−3

,T
0
0
1



−3
1
2
8

where we have chosen the unit vectors as bases for U  3 and V  4.
We have that

2 8 −3
1 4 1
−5 2 2
1 −3 8

has rank 3. This means that kerT  0, the map is injective and

maps the 3 unit
vectors to three linearly independent vectors. The image of the vector x ∈ 3 is a
vector in 4 :

x
y
z



2x  8y − 3z
x  4y  z
−5x  2y  2z
x − 3y  8z

kerT is the solution space for the homogeneous

system which as we already saw consists only of the zero-vector of 3.
The map T : 3 → 4 is injective. We can find a linear map S : 4 → 3 such that
S ∘ T : 3  3 is the identity. Because Te1,Te2,Te3 are linearly independent, we
can find a vector 4 such that 1  Te1,2  Te2,3  Te3,4 form a basis of
4.We define S on this basis by 1  e1,2  e2,3  e3,4   where  is any vector
in 3.For example   0 ∈ 3 is fine. Then STe1  S1  e1 and similarly for the
other unit vectors of 3. That is STei  ei. That is, the composition S ∘ T is the
identity on the unit vectors of 3 and therefore the identity on 3. Because of
S ∘ T  id3 we have for general reasons that S is surjective and T injective. Something
we showed for arbitrary maps. We also see that S is not uniquely determined by T.
First 4 is not unique and if we have found some 4 we can assign any vector  in 3

as its image under S. The map S is unique only on imS by assigning to T, the
vector .

Example 2. This is a simple example which makes the logic quite transparent. Let

T : 2  3,e1
2  e1

3,e2
2  e2

3. The matrix of T is
1 0
0 1
0 0

We add the third unit vector

e3
3 to Te1

2  e1
3,Te2

2  e2
3 and define the map S as

STe1
2  e1

2,STe2
2  e2

3,Se3
3    

a
b

,a,b arbitrarily chosen. Then
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MatS;e1
3,e2

3,e3
3 ;e1

2,e2
2 

1 0 a
0 1 b

and

MatS ∘ T;e1
2,e2

2;e1
2,e2

2 
1 0 a
0 1 b

1 0
0 1
0 0


1 0
0 1

This is an example where the product of two non-square matrices is square and
invertible. Notice that

1 0
0 1
0 0

1 0 a
0 1 b



1 0 a
0 1 b
0 0 0

is also square but not the identity.

Matrices and linear maps can be identified. If A is an m  n −matrix, then
LA : n  m,X  AX  Y is linear and MatLA  A. This is because Aej

n  Aj where
Aj is the jth −column vector of A.

Example 3.
The matrix

2 3 1
1 1 4

stands for a map,A, from 3 into 2. The map is onto (why?), and

therefore kerA  2  3, which gives us a one-dimensional null-space. How can we
compute the kernel, that is find a basis? We have for

2 3 1
1 1 4

as row echelon form:
1 0 11
0 1 −7

This is x  −11z,y  7z or

kerA is the span of the vector
−11
7
1

We have that the matrix of the composition of maps corresponds to the product of the
matrices
If S : U → V,T : V → W,A  MatS;1,2,… ,n;1,2,…m,B  MatT;1,2,…m;1,2,… ,l
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then
MatT ∘ S;1,2,… ,n;1,2,… ,l  BA

In particular, MatLBA  BA : LBAX  BAX  BAX  LBLAX. Thus LBA  LB ∘ LA
and therefore MatLBA  MatLB ∘ LA_  MatLBMatLA  BA

The linear map T : U → V is invertible if there is a linear map S : V → U such that
S ∘ T  idU and T ∘ S  idV. For a linear map T : U → V to have an inverse, T−1, it is
necessary that dimU  dimV. (Proof?)
If A  MatT;1,2,… ,n;1,2,…n and B  MatT−1;1,2,…n;1,2,… ,n then
B  A−1 where AA−1  A−1A  In, the identity n  n −matrix.
We have the following important result:
For an n  n −matrix the following are equivalent:
Ax  0 has only the trivial solution;
Ax  y has for every y exactly one solution x
A has an inverse.
All of this follows from the theorem that a linear map on a finite dimensional vector
space is injective if an only if it is surjective.
Now, how can we find the inverse of a matrix? While the book postpones this up to a
later chapter, see p.100, Example 2, using our current knowledge on linear maps this
is actually quite trivial to do. Let us explain this on that example:

A 
5 7
2 3

stands for the linear map T  LA : 2 → 2, where

1
0


5
2

,
0
1


7
3

.That is A  MatT;e1,e2;e1,e2 where the ei

are the unit vectors in 2.We have

T−1
5
2


1
0

and T−1
7
3


0
1

.Then obviously,

MatT−1;Te1,Te2;e1,e2 
1 0
0 1

and this is not what we want. We want

MatT−1;e1,e2;e1,e2  A−1. For this we need to find

T−1e1 
x11

x21
,T−1e2 

x12

x22
But for this we need to express the unit

vectors as linear combinations of
5
2

and

7
3

: x
5
2

 y
7
3


1
0

This is the inhomogeneous linear system of
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2 equations in 2 unknowns with augmented matrix
5 7 1
2 3 0

which has the row echelon form:
1 0 3
0 1 −2

.Hence:

x  3,y  −2.And from:
1
0

 3
5
2

− 2
7
3

we get

T−1
1
0

 3T−1
5
2

− 2T−1
7
3

 3
1
0

− 2
0
1


3
−2

and similarly for the second column of the inverse. Actually we can work out
simultaneously both inhomogeneous systems where the right hand sides are the unit
vectors

5 7 1 0
2 3 0 1

, row echelon form:
1 0 3 −7
0 1 −2 5

Thus, MatT−1;e1,e2;e1,e2 
3 −7
−2 5

Let A be an n  n −matrix where LA has an inverse. Then A has an inverse A−1.Then if
Aj is the jth −column of A then LAej  Aj.Then if

x1jA1  x2jA2 …xnjAn  ej, where ej is the j − th unit vector
then applying LA

−1 to this equation gives:
x1je1  x2je2 …xnjen  LA

−1ej

This is LA
−1ej 

x1j

x2j



xnj

 Xj and the matrix with columns Xj is the matrix of LA
−1

and the inverse of A.
Let A ∣ In be the matrix A augmented by the n −columns of unit vectors
e1,e2,… ,en.Then using the elementary row operations transforms A into In and In into
A−1.

A ∣ In
elementary row operations

 In ∣ A−1
Actually, AA−1  In.This tells us that LA−1 is injective. But then it must be also
surjective, that is AA−1 also.

5


