Linear Maps, Matrices and Linear Sytems

Let $T : U \to V$ be linear. We defined ker $(T) = \{x | x \in U, T(x) = 0\}$ and $im(T) = \{y | T(x) = y \text{ for some } x \in U\}$. According to the dimension equality we have that dim(ker(T)) + dim(im(T)) = dim(U) = n. We have that the linear map *T* is one-one or injective iff ker $(T) = \{0\}$. If U = V then *T* is injective iff *T* is surjective (onto). This is an easy consequence of the dimension equality.

For any linear map *T* we have a matrix representation. The matrix *A* of *T* depends on the chosen bases α and β of *U* and *V*, repectively:

$$Mat(T; \alpha_1, \alpha_2, \dots, \alpha_n; \beta_1, \beta_2, \dots, \beta_m) = (a_{ij})$$
 where $T(\alpha_j) = \sum_{i=1}^m a_{ij}\beta_i, j = 1, \dots, n; i = 1, \dots, m$

The matrix for *T* is an $m \times n$ matrix where dim(V) = m, dim(U) = n. Each of the *n* columns of *A* contain the *m* components of $T(\alpha_j)$ with respect to the basis β_j . Let *x* be a vector in *U*. If

 $x = \sum_{j=1}^{n} x_j \alpha_j, \text{then } T(x) = T(\sum_{j=1}^{n} x_j \alpha_j) = \sum_{j=1}^{n} x_j T(\alpha_j) = \sum_{j=1}^{n} x_j \sum_{i=1}^{m} a_{ij} \beta_i = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_j) \beta_i = \sum_{j=1}^{m} y_i \beta_i$ where

$$y_{i} = \sum_{j=1}^{n} a_{ij} x_{j}$$
Thus
$$\begin{pmatrix} a_{11} & a_{12} & \dots & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & \dots & a_{2n} \\ \dots & \dots & \ddots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \dots \\ \dots \\ x_{n} \end{pmatrix} = \begin{pmatrix} y_{1} \\ y_{2} \\ \dots \\ \dots \\ y_{m} \end{pmatrix}$$

Thus the map T(x) = y has a coordinate representation as Ax = y. with this in mind, we see that

 $\dim(im(T)) = \dim(\text{columnspace } A) = s, \dim(\ker(T)) = \dim(\text{solution space for } Ax = 0) = n - r$

.

where *r* is the row rank of *A*. By the dimension equality we have that s + (n - r) = n which is s = r that is **row rank=column rank**.

Example 1:

Let
$$U = \mathbb{R}^3$$
, $V = \mathbb{R}^4$ then the matrix $A = \begin{pmatrix} 2 & 8 & -3 \\ 1 & 4 & 1 \\ -5 & 2 & 2 \\ 1 & -3 & 8 \end{pmatrix}$ stands for the linear map T

where
$$T\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} 2\\ 1\\ -5\\ 1 \end{pmatrix}, T\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix} = \begin{pmatrix} 8\\ 4\\ 2\\ -3 \end{pmatrix}, T\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} -3\\ 1\\ 2\\ 8 \end{pmatrix}$$

where we have chosen the unit vectors as bases for $U = \mathbb{R}^3$ and $V = \mathbb{R}^4$. We have that

 $\begin{pmatrix} 2 & 8 & -3 \\ 1 & 4 & 1 \\ -5 & 2 & 2 \\ 1 & -3 & 8 \end{pmatrix}$ has rank 3. This means that ker(*T*) = {0}, the map is injective and

maps the 3 unit

vectors to three linearly independent vectors. The image of the vector $x \in \mathbb{R}^3$ is a vector in \mathbb{R}^4 :

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 2x + 8y - 3z \\ x + 4y + z \\ -5x + 2y + 2z \\ x - 3y + 8z \end{pmatrix} \text{ker}(T) \text{ is the solution space for the homogeneous}$$

system which as we already saw consists only of the zero-vector of \mathbb{R}^3 . The map $T : \mathbb{R}^3 \to \mathbb{R}^4$ is injective. We can find a linear map $S : \mathbb{R}^4 \to \mathbb{R}^3$ such that $S \circ T : \mathbb{R}^3 \to \mathbb{R}^3$ is the identity. Because $T(e_1), T(e_2), T(e_3)$ are linearly independent, we can find a vector β_4 such that $\{\beta_1 = T(e_1), \beta_2 = T(e_2), \beta_3 = T(e_3), \beta_4\}$ form a basis of \mathbb{R}^4 . We define *S* on this basis by $\beta_1 \mapsto e_1, \beta_2 \mapsto e_2, \beta_3 \mapsto e_3, \beta_4 \mapsto \alpha$ where α is any vector in \mathbb{R}^3 . For example $\alpha = 0 \in \mathbb{R}^3$ is fine. Then $S(T(e_1)) = S(\beta_1) = e_1$ and similarly for the other unit vectors of \mathbb{R}^3 . That is $S(T(e_i)) = e_i$. That is, the composition $S \circ T$ is the identity on the unit vectors of \mathbb{R}^3 and therefore the identity on \mathbb{R}^3 . Because of $S \circ T = id_{\mathbb{R}^3}$ we have for general reasons that *S* is surjective and *T* injective. Something we showed for arbitrary maps. We also see that *S* is not uniquely determined by *T*. First β_4 is not unique and if we have found some β_4 we can assign any vector α in \mathbb{R}^3 as its image under *S*. The map *S* is unique only on im(S) by assigning to $T(\alpha)$, the vector α .

Example 2. This is a simple example which makes the logic quite transparent. Let

$$T: \mathbb{R}^2 \twoheadrightarrow \mathbb{R}^3, e_1^2 \mapsto e_1^3, e_2^2 \mapsto e_2^3.$$
 The matrix of T is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ We add the third unit vector e_3^3 to $T(e_1^2) = e_1^3, T(e_2^2) = e_2^3$ and define the map S as $S(T(e_1^2)) = e_1^2, S(T(e_2^2)) = e_2^3, S(e_3^3) = \alpha = \begin{pmatrix} a \\ b \end{pmatrix}, a, b$ arbitrarily chosen. Then

$$Mat(S; e_1^3, e_2^3, e_3^3; e_1^2, e_2^2) = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix}$$

and

$$Mat(S \circ T; e_1^2, e_2^2; e_1^2, e_2^2) = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

This is an example where the product of two non-square matrices is square and invertible. Notice that

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{pmatrix}$ is also square but not the identity.

Matrices and linear maps can be identified. If *A* is an $m \times n$ -matrix, then $L_A : \mathbb{R}^n \twoheadrightarrow \mathbb{R}^m, X \mapsto AX = Y$ is linear and $Mat(L_A) = A$. This is because $Ae_j^n = A_j$ where A_j is the *j*th -column vector of *A*.

Example 3.

The matrix

 $\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix}$ stands for a map,*A*, from \mathbb{R}^3 into \mathbb{R}^2 . The map is onto (why?), and

therefore ker(A) + 2 = 3, which gives us a one-dimensional null-space. How can we compute the kernel, that is find a basis? We have for

$$\begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$
 as row echelon form:
$$\begin{pmatrix} 1 & 0 & 11 \\ 0 & 1 & -7 \end{pmatrix}$$
 This is $x = -11z, y = 7z$ or ker(A) is the span of the vector
$$\begin{pmatrix} -11 \\ 7 \\ 1 \end{pmatrix}$$

We have that the matrix of the composition of maps corresponds to the product of the matrices

If
$$S: U \rightarrow V, T: V \rightarrow W, A = Mat(S; \alpha_1, \alpha_2, \dots, \alpha_n; \beta_1, \beta_2, \dots, \beta_m), B = Mat(T; \beta_1, \beta_2, \dots, \beta_m; \gamma_1, \gamma_2, \dots, \gamma_l)$$

then

$$Mat(T \circ S; \alpha_1, \alpha_2, \dots, \alpha_n; \gamma_1, \gamma_2, \dots, \gamma_l) = BA$$

In particular, $Mat(L_{BA}) = BA : L_{BA}(X) = (BA)X = B(AX) = L_B(L_A(X))$. Thus $L_{BA} = L_B \circ L_A$ and therefore $Mat(L_{BA}) = Mat(L_B \circ L_A) = Mat(L_B)Mat(L_A) = BA$

The linear map $T : U \to V$ is invertible if there is a linear map $S : V \to U$ such that $S \circ T = id_U$ and $T \circ S = id_V$. For a linear map $T : U \to V$ to have an inverse, T^{-1} , it is necessary that dim $U = \dim V$. (Proof?)

If $A = Mat(T; \alpha_1, \alpha_2, ..., \alpha_n; \beta_1, \beta_2, ..., \beta_n)$ and $B = Mat(T^{-1}; \beta_1, \beta_2, ..., \beta_n; \alpha_1, \alpha_2, ..., \alpha_n)$ then $B = A^{-1}$ where $AA^{-1} = A^{-1}A = I_n$, the identity $n \times n$ -matrix.

We have the following important result:

For an $n \times n$ –matrix the following are equivalent:

Ax = 0 has only the trivial solution;

Ax = y has for every y exactly one solution x

A has an inverse.

All of this follows from the theorem that a linear map on a finite dimensional vector space is injective if an only if it is surjective.

Now, how can we find the inverse of a matrix? While the book postpones this up to a later chapter, see p.100, Example 2, using our current knowledge on linear maps this is actually quite trivial to do. Let us explain this on that example:

$$A = \begin{pmatrix} 5 & 7 \\ 2 & 3 \end{pmatrix} \text{ stands for the linear map } T = L_A : \mathbb{R}^2 \to \mathbb{R}^2 \text{. where}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 7 \\ 3 \end{pmatrix}. \text{ That is } A = Mat(T; e_1, e_2; e_1, e_2) \text{ where the } e_i$$
are the unit vectors in \mathbb{R}^2 . We have
$$T^{-1}\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } T^{-1}\begin{pmatrix} 7 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \text{ Then obviously,}$$

$$Mat(T^{-1}; Te_1, Te_2; e_1, e_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ and this is not what we want. We want}$$

$$Mat(T^{-1}; e_1, e_2; e_1, e_2) = A^{-1}. \text{ For this we need to find}$$

$$T^{-1}(e_1) = \begin{pmatrix} x_{11} \\ x_{21} \end{pmatrix}, T^{-1}(e_2) = \begin{pmatrix} x_{12} \\ x_{22} \end{pmatrix} \text{ But for this we need to express the unit}$$
vectors as linear combinations of $\begin{pmatrix} 5 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ This is the inhomogeneous linear system of

2 equations in 2 unknowns with augmented matrix

$$\begin{pmatrix} 5 & 7 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$
 which has the row echelon form:
$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \end{pmatrix}$$
. Hence:
$$x = 3, y = -2.$$
 And from:
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3\begin{pmatrix} 5 \\ 2 \end{pmatrix} - 2\begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
 we get
$$T^{-1}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 3T^{-1}\begin{pmatrix} 5 \\ 2 \end{pmatrix} - 2T^{-1}\begin{pmatrix} 7 \\ 3 \end{pmatrix} = 3\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 2\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

and similarly for the second column of the inverse. Actually we can work out simultaneously both inhomogeneous systems where the right hand sides are the unit vectors

$$\begin{pmatrix} 5 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix}, \text{ row echelon form:} \begin{pmatrix} 1 & 0 & 3 & -7 \\ 0 & 1 & -2 & 5 \end{pmatrix}$$

Thus, $Mat(T^{-1}; e_1, e_2; e_1, e_2) = \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix}$

Let *A* be an $n \times n$ –matrix where L_A has an inverse. Then *A* has an inverse A^{-1} . Then if A_j is the j^{th} –column of *A* then $L_A(e_j) = A_j$. Then if

$$x_{1j}A_1 + x_{2j}A_2 + \ldots + x_{nj}A_n = e_j$$
, where e_j is the j - th unit vector

then applying L_A^{-1} to this equation gives:

$$x_{1j}e_1 + x_{2j}e_2 + \dots + x_{nj}e_n = L_A^{-1}(e_j)$$

This is $L_A^{-1}(e_j) = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix} = X_j$ and the matrix with columns X_j is the matrix of L_A^{-1}

and the inverse of A.

Let $(A | I_n)$ be the matrix A augmented by the n-columns of unit vectors e_1, e_2, \ldots, e_n . Then using the elementary row operations transforms A into I_n and I_n into A^{-1} .

$$(A \mid I_n) \stackrel{\text{elementary row operations}}{\Rightarrow} (I_n \mid A^{-1})$$

Actually, $AA^{-1} = I_n$. This tells us that $L_{A^{-1}}$ is injective. But then it must be also surjective, that is AA^{-1} also.