Name:

FINAL

Math 5331 Linear Algebra Online

This Final is worth 200 points. You are not allowed to use any books or notes. You have three hours to complete the test.

- 1. Define that \mathbf{U} is a subspace of the vector space \mathbf{V} .
- 2. Proof that the solution space of a linear homogeneous system $\mathbf{A}X = 0$ of m equations in n unknowns with real coefficients is a subspace of \mathbb{R}^n
- 3. (a) Define that the vectors v_1, v_2, \ldots, v_k are linearly independent.
 - (b) Define the span of vectors v_1, v_2, \ldots, v_k .
- 4. Define that the vectors v_1, v_2, \ldots, v_k are a basis of the vector space **V**.
- 5. Find a basis of all solutions for the linear homogeneous system

$$\begin{pmatrix} 1 & -1 & 0 & 5 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = 0$$

- 6. If **A** is an $m \times n$ matrix of rank r, what is then the dimension of the solution space of the linear homogeneous system $\mathbf{A}X = 0$?
- 7. (a) Define that $T: \mathbf{U} \to \mathbf{V}$ is a linear map from the vector space \mathbf{U} to the vector space \mathbf{V} .
 - (b) How are nullspace and range of a linear map defined?
 - (c) Let T be a linear map from \mathbb{R}^n to \mathbb{R}^m . How is the matrix **A** for T with respect to the unit vectors defined?
 - (d) Express null space and range of T in terms of the matrix \mathbf{A} for T. In particular relate column and row rank of \mathbf{A} to the dimensions of null space and range of T.
- 8. Let $T : \mathbf{U} \to \mathbf{V}$ be a linear map from the vector space \mathbf{U} to the vector space \mathbf{V} . Prove that if the vectors $T(v_1), T(v_2), \ldots, T(v_k)$ are linearly independent, then v_1, v_2, \ldots, v_k are linearly independent.
- 9. Assume that the linear map T on \mathbb{R}^3 has matrix

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & 1 & 5 \\ 3 & 1 & 7 \\ 1 & 3 & 5 \end{array} \right)$$

- (a) Find a basis for the null space of T.
- (b) Find a basis for the range of T.
- 10. Let T be a linear map from $\mathbb{R}^n \to \mathbb{R}^n$ and let $\lambda \in \mathbb{R}$.
 - (a) Define the characteristic polynomial $c_T(x)$ of T. What is the characteristic polynomial of the identity map on \mathbb{R}^n and what is the characteristic polynomial of the zero map on \mathbb{R}^n ?
 - (b) Define that λ is an eigenvalue of T.
 - (c) Define that \mathbf{E}_{λ} is the eigenspace for λ .