Given a set *S* of vectors, the problem of finding a basis for the span is an important problem in Linear Algebra. It has a straight-forward solution. If $S = \{v_1, v_2, ..., v_k\}$ then let *A* the matrix which has the v_i as its rows. It is easy to see that the elementary row operations on *A* do not change the *span*(*S*). That is the the non-zero rows of *REF*(*A*) form a basis and gives us also dim(*span*(*S*). The following example should look familiar:

$$S = \{v_1 = (1, 0, -1, 0), v_2 = (0, 1, 1, 1), v_3 = (5, 4, -1, 4)\}$$

Then $A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 5 & 4 & -1 & 4 \end{pmatrix}$, which has the row echelon form: $\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Thus, $u_1 = \begin{pmatrix} 1 & 0 & -1 & 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 0 & 1 & 1 & 1 \end{pmatrix}$ form a basis and dim(*span*(*S*) = 2. Because v_1 and v_2 are linearly independent, they too form a basis. Or any two of the three

$$v_i$$
's.

One could also start with the observation that the first two vectors are linearly independent and check for $v_3 \in span\{v_1, v_2\}$. That amounts to solving $x_1v_1 + x_2v_2 = v_3$. This is a linear

system :
$$x_1 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ -1 \\ 4 \end{pmatrix}$$
. It can be solved now by computing the row
echelon form of $B = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ -1 & 1 & -1 \\ 0 & 1 & 4 \end{pmatrix}$ This is a 4 × 2 - matrix with an augmented right
column. Again, an easy calculation yields:
$$\begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ -1 & 1 & -1 \\ 0 & 1 & 4 \end{pmatrix}$$
has row echelon form:
$$\begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and this means, $x_1 = 5$ and $x_2 = 4$.
Indeed, $5 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ -1 \\ 4 \end{pmatrix}$

Coming back to *A*, what is the meaning of AX = 0? It stands for the homogeneous system: $x_1 - x_3 = 0, x_2 + x_3 + x_4 = 0, 5x_1 + 4x_2 - x_3 + 4x_4 = 0$. From its row echelon form we see that $x_1 = x_3, x_2 = -x_3 - x_4$ and we get the general solution *X* as linear combinations of two basis solutions:

$$X_{3} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, X_{4} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}, X = x_{3} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_{3} \\ -x_{3} - x_{4} \\ x_{3} \\ x_{4} \end{pmatrix}$$

Now comes the question: What have X_3 and X_4 to do with span(S)?? These two vectors span a two-dimensional subspace of \mathbb{R}^4 , but certainly not span(S).

What we have is this: $v_1X_3 = 0$, $v_1X_4 = 0$; $v_2X_1 = 0$, $v_2X_2 = 0$ (we can omit similar equations with v_3) The products are matrix products of rows v'_is and columns X_j . Of course, $v_iX_j = 0$ is the same as $X_j^t v_i^t = 0$ This says that the system CX = 0 where the rows are X_3^t, X_4^t has as span(S) as its solution space:

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} X = 0 \text{ has solution space } span(S). \text{ Check:}$$

$$\begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ -1 & 1 & -1 \\ 0 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

This example can be generalized to a theorem.

Theorem Any subspace U of \mathbb{R}^n is the solution set of a linear system CX = 0.

Proof. Let $S = \{\alpha_1, ..., \alpha_k\}$ be a basis of U. Then solve the linear system AX = 0 which has the k-vectors $\alpha_i \in \mathbb{R}^n$ as rows. A is an $k \times n$ -matrix. The rank of B is k and therefore the null-space is of dimension n - k. We get (n - k)-many linearly independent solution vectors $X_1, ..., X_{n-k}$. These are column vectors with n-many components. We form the matrix Cwhich has the X_i as rows. Then C has rank n - k and therefore the null space has dimension k. This null space contains S and therefore is equal to U.

Example.

Let $S = \{u = (1, 0, 1, 2, 3), (2, 1, 3, 4, -1)\}$ be two vectors in \mathbb{R}^5 . They are obviously independent and the span is 2 –dimensional.

 $U = \{su + tv \mid s, t \in \mathbb{R}\}$ is a plane in \mathbb{R}^5 . Then let

$$A = \begin{pmatrix} 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 3 & 4 & -1 \end{pmatrix} \text{ which has nullspace basis: } \begin{bmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{pmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} -3 \\ 7 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

Then let C be the matrix which has these 3 –columns as rows:

$$C = \begin{pmatrix} -1 & -1 & 1 & 0 & 0 \\ -2 & 0 & 0 & 1 & 0 \\ -3 & 7 & 0 & 0 & 1 \end{pmatrix}, \text{ nullspace basis:} \begin{pmatrix} \frac{1}{2} \\ \frac{3}{14} \\ \frac{5}{7} \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -\frac{1}{7} \\ -\frac{1}{7} \\ 0 \\ 1 \end{pmatrix}$$

It is not immediate that U has these two vectors as basis. We want to confirm that there are s, t such that

$$\frac{2}{7} \begin{pmatrix} 1\\0\\1\\2\\3 \end{pmatrix} - \frac{1}{7} \begin{pmatrix} 2\\1\\3\\4\\-1 \end{pmatrix} = \begin{pmatrix} 0\\-\frac{1}{7}\\-\frac{1}{7}\\0\\1 \end{pmatrix}$$

So, indeed, *C* is a matrix for *U* in the sense that *U* is the solution space for CX = 0