Name:

You have $\mathbf{9 0}$ minutes to complete the test. You cannot use any books or notes.

1. Which of the direct products are cyclic? Explain your answers.
a. $Z_{2} \times Z_{3} \times Z_{5}$. Answer: cyclic, orders are pairwise prime.
b. $Z_{2} \times Z_{2}$. Answer: not. Each element has order 2, none cannot generate a group of order 4. It is Klein four group V
c. $Z \times Z$. Not cyclic. Any possible generator like $(-1,1)$ cannot generate any element where one component is 0
2. Calculate the order of $(8,6,4)$ in $Z_{18} \times Z_{9} \times Z_{8}$. Answer
$o(8)=\frac{18}{(8,18)}=\frac{18}{2}=9, o(6)=\frac{9}{(6.9)}=\frac{9}{(6,9)}=\frac{9}{3}=3, o(4)=$ $\frac{8}{(4,8)}=\frac{8}{4}=2 o(8,6,4)=\operatorname{lcm}(9,3,2)=18$
3. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be maps such that $g \circ f: A \rightarrow C$ is injective (i.e., one-to-one). Prove that f must be injective. Answer:
Assume that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $g\left(f\left(x_{1}\right)=g\left(f\left(x_{2}\right)\right)\right.$. But then $x_{1}=x_{2}$ because $g \circ f$ is injective. Thus f is injective.
4. Find for the function $f: N \rightarrow N$, where $f(n)=2 n, n=1,2, \ldots$, some function $g: N \rightarrow N$ such that $g \circ f$ is the identity on N.
Can you find some h such that $f \circ h$ is the identity on N?Answer: $g(m)=\frac{m}{2}$ if m is even, $g(m)=1$ (or any number)if m is odd. Then $g f(n)=g(2 n)=n$ for any n. There is no h such that $f \circ h=i d$ because this would make f surjective which is not the case.
5. Find the right cosets of the subgroup $<(1,1)>$ in $Z_{2} \times Z_{4}$ Answer:
$<(1,1)\rangle=\{(1,1),(0,2),(1,3),(0,0)\}=H$,
$\mathbb{Z}_{2} \times \mathbb{Z}_{4}=\{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)\}, H+(0,0)=H=\{(0,0),(1$ $H+(0,1)=\{(0,1),(1,2),(0,3),(1,0)\}$. There are two cosets, the coset H for $(0,0)$ and the coset $H+(0,1)$.
6. Let \mathbf{G} be any group and $x \in \mathbf{G}$. Let σ be the map $\sigma: y \mapsto x y x^{-1}$. Prove that this map is bijective. Answer: Assume that $\sigma\left(y_{1}\right)=\sigma\left(y_{2}\right)$ then $x y_{1} x^{-1}=x y_{2} x^{-1}$. This yields $y_{1}=y_{2}$ by left and right cancellation. Let $z \in G$. Then $z=x\left(x^{-1} z x\right) x^{-1}$ shows that σ is surjective..
7. a. Let R be an equivalence relation on the set S, and let $s \in S$. How is the equivalence class of s under R defined? Answer:
$[s]=\{t \mid s R t\}$
b. Let R be the equivalence relation on the set R of real numbers where $r \sim s$ iff $|r|=|s|$. What is the equivalence class of r ?
Answer: $[r]=\{r,-r\}$
8. a. Find the order of the following permutation in S_{10} :

$$
\begin{aligned}
& \\
& \left(\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 4 & 5 & 2 & 1 & 7 & 8 & 6 & 10 & 9
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 9 & 10 \\
3 & 4 & 5 & 2 & 1 & 7 & 8 & 6 \\
10 & 9
\end{array}\right) \\
& \text { order is } 6 .
\end{aligned}
$$

b. Is this permutation even or odd? Answer: This permutation is even as a product of even permutation.
9. Let p be a prime and G a group whose order is p. Prove that G is cyclic. Answer: The order of any element x different from e in G is a divisor of the order of G which is a prime p. Thus it is p.
10. Let G be a group and let H and K be subgroups of G where $|H|$ and $|K|$ are relatively prime. Prove that $H \cap K=\{e\}$. Answer: Let $x \in H \cap K$. Then $o(x)$ divides $o(H)=|H|$ as well as $o(x)$ divides $o(K)=|K|$. But $|H|$ and $|K|$ are relatively prime. Thus $o(x)=1$ which is the same as $x=e$

