Practice Sheet for Test 3 Math 3336

- 1. Prove by induction that 6 divides $n^3 n$ whenever n is a positive integer. '
- 2. Prove that a set with $n \ge 2$ elements has n(n-1)/2 subsets containing exactly 2 elements.
- 3. Give a recursive definition of x^n for a real number x.
- 4. Give a recursive definition of the sequence $a_n = n(n+1)$.
- 5. (a) Define that R is an equivalence relation on the set A.
 - (b) Define that π is a partition of the set A.
 - (c) Describe the partition π_R for an equivalence R.
 - (d) Define the equivalence R_{π} for a partition π .
- 6. Let $f: A \to B$ be any function from the set A to the set B. How is the equivalence relation \sim_f on A defined?
- 7. Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, be the parabola function. What does the partition for the equivalence relation of this function look like?
- 8. Determine which of the following relations on the set \mathbb{Z} of integers are equivalence relations.
 - (a) aRb iff $a b \ge 0$.
 - (b) aRb iff $ab \ge 0$.
 - (c) aRb iff |a| = |b|.
 - (d) aRb iff $|a-b| \le 1$.
- 9. Prove that the intersection of two equivalence relations E and F is an equivalence relation. Explain why the union of two equivalence relations is in general not an equivalence relation. Explain the meaning $E \vee F$.
- 10. Let E and F be equivalence relations on the set $A = \{a, b, c, d, e, f, g\}$ where the partition for E is given by

$$\pi_E = \{\{a\}, \{b, c, d\}, \{e\}, \{f, g\}\}\$$

and the partition for F is

$$\pi_F = \{\{a, f\}, \{b, d, g\}, \{c, e\}\}$$

Find the partition of $E \vee F$ and $E \wedge F$.