
Problems and Comments on Relations

Chapter 9

Section 9.1, Problems: 1, 26, 32, 49, 55

Section 9.4, Problems: 1, 2, 3, 22, 23
Section 9.5, Problems: 3, 16, 41, 55, 57
Section 9.6, Problems: 5, 12, 15, 33, 62, 66

The idea of a relation between elements of a set A and a set B can be formalized by
specifying a subset R of the Cartesian product A � B. Instead of saying that a and b are in
the relation R, or aRb, we say that �a, b� � R � A � B. On any set A we have the equality
relation, x � y, and this turns into the diagonal � � ��a, a�| a � A�. If A � �, then � is the
graph of the function y � x. The order relation x � y turns into the set ��x, y�| x � y� and this
is the set of points in the plane �2 which are below the line y � x.
A function f : A � B leads to a relation by saying that x and y are in the functional relation
determined by f , in case that y � f�x�. This relation is obviously represented by the graph of
f. Recall that graph�f� � ��x, y�| y � f�x�� � A � B.
The main advantage of treating relations as sets is that we can apply all the common set
theoretical operations, like union, intersection and complement. Of particular interest is also
the inverse of a relation. If R is a relation between elements of A and B, then the inverse
relation R�1 is a relation between the elements of B and A :

R�1 � ��b, a�| �a, b� � R�

For example, if � is the order on �, �a, b� � � iff a � b then the inverse is the greater relation
�, because a � b iff b � a. You should pay special attention to functions. The inverse
relation for a function is a function only if the function is invertible.
Of great importance is the composition of relations. As it is the case for functions, relations
in order to be composable have to be connected. If R � A � B, S � B � C then the
composition of S and R is defined by: S � R � ��a, c�|�b �a, b� � R, �b, c� � S�. In particular, we
can form all powers Rn of R where R0 is defined as �, R1 � R, R2 � R � R,and Rn�1 � Rn � R.
Notice that the composition of composable relations is associative. Composition with a
diagonal does not change a relation.
Notice that �a, b� � Rn iff there are

c1, c2,,� , cn�1 such that aRc1, c1Rc2,� , cn�1Rb

R� � ��Rn| n � 1�

is called the connectivity relation for R. We have �a, b� � R� iff there is a path in R from a to
b.
If the relation is transitive, then one has R2 � R : �a, b� � R and �b, c� � R, that is �a, c� � R2

yields �a, c� � R. On the other hand, the meaning of R2 � R is that whenever one has some
b such that �a, b� � R, �b, c� � R one has that �a, c� � R. But this is transitivity. Hence, R2 � R
iff R is transitive.
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If R2 � R , then R � R2 � R3 � R � R � R2 � R, that is R3 � R. That is, R is transitive if and
only if Rn � R, n � 1. Thus R is transitive iff R� � R. (Notice that R � R�)
That the relation R is reflexive means � � R0 � R.
The relation R on A is symmetric if R�1 � R.
If R is any relation on A, R � A � A, then adding the diagonal makes it reflexive. R � � is
called the reflexive closure of A.
To make R symmetric, one needs to add R�1 to R, R � R�1 is called the symmetric closure of
A.
To make R transitive, on has to add all powers Rn of R to R. The connectivity relation R� is
also called the transitive closure of R.
It is easy to see that the intersection of reflexive relations is reflexive. For any given relation
R on A, there is is a relation which contains R and which is reflexive, namely R � R. From
this observation alone, one can conclude that there is a smallest relation that contains R,
and which is reflexive. This relation then might be called the reflexive closure. We already
know what this closure looks like.
Similarly, the intersection of symmetric relations is symmetric and R � R is symmetric.
Hence, for any relation R there is a smallest symmetric relation that contains R. This relation
is the symmetric closure of R.
The intersection of transitive relations is transitive and R � R is transitive. Hence for any
relation R on A there must be a smallest transitive relation that contains R, the transitive
closure. It is R�.
Pay attention to Lemma1, p. 501, in the book. If A is finite with n elements, then one needs
only the calculation of the first n powers of R in order to calculate R�.

Exercise Show that the intersection of transitive relations is transitive and that

��S| R � S, S transitive � � R�

Equality is reflexive, we certainly have a � a, equality is symmetric, that is a � b � b � a
and equality is transitive, a � b, b � c � a � c. Equivalence relations are relations which
share with equality these three properties. Congruence and similarity of triangles are
equivalence relations between triangles. Triangles are congruent if the lengths of their sides
are the same. Triangles are similar if the have the same angles. The idea of an equivalence
between objects A and B (e.g., triangles A and B) is that A and Bhave certain characteristics
(e.g., length of sides, angles) in common. If we define a function f on the set of triangles
that assigns to a triangle A the lengths of its three sides, like f�A� � �a � 3, b � 5, c � 5� then
A 	 B iff f�A� � f�B�. The idea that objects are equivalent if a function defined for them
agree can be vastly generalized:
Let f : A � B be any function. Define ker�f� � ��a1, a2�| f�a1� � f�a2��. Then ker�f� is an
equivalence and called the kernel of the function f. .
Every equivalence relation E leads to a partition �E. (a partition is a collection of non-empty
subsets of A,called classes, which are pairwise disjoint and whose union is A). Two
elements are in the same class of �E iff they are equivalent. And every partition � leads to
an equivalence E� where elements are equivalent if they belong to the same class. The
relationship between equivalence relations and partitions is nearly tautological but requires
a formal proof (Theorem 1, Theorem 2 on p. 510, 512).
For linear maps T : U � V between vector spaces, one identifies the class of the zero
vector, N � �0	 � �u| T�u� � 0�, with the kernel. One can do that because N, also called the
null space (for T), determines any other class: �u	 � u � N.
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If T is a temperature distribution function, then the equivalence classes for T are called
isotherms.
If N : C � �A, B, C, D, F� is the function which assigns to a student in the class C his standing
with respect to his grade, then C partitions into the classes of A-students, B-students etc.
Transitivity is a fundamental property of any concept of ordering. Anti-symmetry is equally
important, one cannot have a 
 b and b 
 a unless a � b. A relation 
 which is reflexive,
transitive and anti-symmetric is called a partial ordering. If any two elements a and b are
comparable, that is either a 
 b or b 
 a, then the partial order is called a total order.
For any subset S of a partially ordered set one can define that u is an upper bound for
S : u � s for all s � S. An upperbound for S which belongs to S is the maximum of S. If a set
has a maximum then it is unique (Proof?). Lower bounds and minima are similarly defined.
If for a subset S, the set of upper bounds is non-empty and has a minimum, then this least
upper bound is called the supremum of S. Infimum is similarly defined as the largest lower
bound of a set S. The open interval �0, 1�of real numbers has infimum 0 and supremum 1.
It is an axiom for real numbers that any subset S of real numbers which has an upper
bound, has a supremum. This is the Least Upper Bound Axiom.
A partially ordered set �P,
� is called bounded if it has a minimum as well as a maximum. A
bounded partially ordered set is called a complete lattice in case that every non-empty
subset S has a supremum and an infimum. For any set S the powerset P�S� with inclusion as
partial ordering is an example of a complete lattice. The infimum of a set of subsets is its
intersection, the supremum is its union.
A partially ordered set �L,
� is called a lattice if every finite subset has a supremum and an
infimum. The natural numbers (N, |�, where | is the partial order given by divisibility, is a
lattice. Here the infimum of �a, b� is the gcd�a, b�, the greatest common divisor. Recall that
the greatest common divisor of a, b is the number d such that d|a and d|b. That is, d is a
lower bound with respect to divisibility of a and b, and if e is any other lower bound for a and
b, that is e|a and e|b, then e|d. That is, d is the greatest lower bound for �a, b�. The lowest
common multiple of �a, b� is the supremum of �a, b�. The existence of and gcd is shown in
any modern algebra course. It is not trivial and relies on the unique prime factorization
theorem. The uniqueness part of this theorem is not trivial.
Any partial order on a finite set can be extended to a total order. This is called topological
sorting and the book provides an algorithm for doing that. The following exercise will do the
same and can be applied to infinite partial orderings.

Exercise Let �A, R� be a partial ordering and assume that neither aRb nor bRa holds, i.e.,
�a, b� � R, �b, a� � R. Then the transitive closure of R � ��a, b��is antisymmetric
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