Name:

You have 90 minutes to complete the test. You cannot use any books or notes.

1. State the Well-Ordering Principle for Z^{+}. Answer: For the test, study first and second form of induction.
2. Prove by induction that $1+3+5+\cdots+(2 n+1)=(n+1)^{2}$. Answer: This is obvious for $n=1: 1+3=4=2^{2}$. Assume the claim for n Then: $1+3+5+\cdots+(2 n+1)+(2(n+1)+1)=(n+1)^{2}+2 n+3=n^{2}+2 n+1+2 n+3=n^{2}$
3. Prove by Mathematical Induction that if a set S has n elements then S has 2^{n}-many subsets. Answer: If S has no element, then there is only one subset, namely the empty set. Assume the claim for any set S with n-elements. Add any element c to the set S. Then the subsets of $S \cup\{c\}$ are the subsets A of S plus all sets $A \cup\{c\}$. Thus $S \cup\{c\}$ has twice as many subsets as S has. S has by induction hypothesis 2^{n} many subsets thus $S \cup\{c\}$ has $2 \times 2^{n}=2^{n+1}$-many subsets.
4. Is division a commutative operation on the set R^{+}of positive numbers? Is it associative? Explain your answers. Answer: of course, division is not commutative, $1 / 2 \neq 2 / 1$. It is not associative, $((1 / 2) / 3) \neq 1 /(2 / 3)$
5. Define that $(G, *)$ is a group. You can also state that $\left(G, *,{ }^{-1}, e\right)$ is a group. Answer: RTead this in the book.
6. Define the additive group $\left(Z_{n}, \oplus\right)$ of integers modulo n. You have to state exactly what its elements are, how \oplus is defined, what the identity is, and how the inverse of an element is defined. Answer: Read this in the book.
7. a. Find the additive inverse of 40 modulo 48 . Answer: $-40 \bmod 48=8 \bmod 48$
b. Solve $15+x=7$ modulo 48. Answer:

$$
x=7-15=-8 \bmod 48=-8+48=40 \bmod 48
$$

8. Let $(G, *)$ be a group such that $x^{2}=e$ for all $x \in G$. Show that G is abelian. Answer: $x^{2}=e$ is the same as $x=x^{-1}$ for every x. Thus $x y=(x y)^{-1}=y^{-1} x^{-1}=y x$
9. Let G be a finite group, and consider the multiplication table for multiplication of G. Prove that every element of G occurs precisely once in each row and once in each column. Answer: This is just that given some x and z you can find some y such that $x y=z$. This is clear, $y=x^{-1} z$. This takes care for rows. For columns you argue that given any y and z you can finds some x such that $x y=z$. Here $x=y^{-1} z$.
10. Find a multiplication table on the set $A=\{a, b, c, d\}$ where every element of A occurs precisely once in each row and once in each column but where A is not a group. You have to explain why your algebra $A=(\{a, b, c, d\}, *)$ is not a group. Answer: Optional puzzle. Not needed for the test.
