1. Mark as true or false.
 a. A function is injective if \(f(a) = f(b) \) only if \(a = b \).
 b. A function is injective if \(a = b \) yields \(f(a) = f(b) \).
 c. A function is injective if \(f(a) \neq f(b) \) only if \(a \neq b \).
 d. A function is injective if \(f(a) \neq f(b) \) in case that \(a \neq b \).

2. Let \(A \) be a set and \(P(A) \) be the power set of \(A \). Mark as true or false.
 a. There is an injection from \(A \) to \(P(A) \).
 b. There is a surjection from \(A \) to \(P(A) \).

3. Find a bijection from the set \(\mathbb{N} \) of natural numbers to the set \(\mathbb{E} \) of even natural numbers.

4. Use the Cantor-Bernstein Theorem in order to prove that there is a bijection from the open interval \((0, 1) \) to the closed interval \([0, 1] \).

5. Determine whether each of these statements are true or false.
 a) \(\emptyset \in \emptyset \)
 b) \(\emptyset \in \{\emptyset\} \)
 c) \(\emptyset \subseteq \{\emptyset\} \)
 d) \(\{\emptyset\} = \{\emptyset, \emptyset\} \)
 e) \(\{\emptyset\} \subseteq \{\emptyset, \emptyset\} \)
 f) \(\{\emptyset\} \subseteq \{\emptyset\} \)

6. What is the successor of the set \(\{adam, eve\} \)?

7. Determine whether the function \(f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) is onto if
 a) \(f(m, n) = m + n \)
 b) \(f(m, n) = m - n \)
 c) \(f(m, n) = m^2 + n^2 \)

8. Let \(f \) be a function from \(A \) to \(B \). Let \(S \) and \(T \) be subsets of \(A \) and \(U \) and \(V \) be subsets of \(B \). True or false:
 a) \(f(S \cup T) = f(S) \cup f(T) \)
 b) \(f(S \cap T) = f(S) \cap f(T) \)
 c) \(f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V) \)
 d) \(f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V) \)

9. Assume for sets \(A \) and \(B \) that the power sets are equal, that is \(P(A) = P(B) \). Can you conclude that \(A = B \)?

10. a) Is the empty set \(\emptyset \) the power set of a set? b) Is \(\{\emptyset, \{a\}, \{b\}, \{a, b\}\} \) the power set of a set?