Practice Test 2 with answers.

1. Which of the following subsets of R^3 are subspaces?

(a) $\{(x, y, z) \mid x + y = 0 \text{ and } y + z = 0\}$

Yes. This set is the solution set of a linear system.

(b)
$$\{(x;y;z) \mid x = 0 \text{ or } y = 0\}$$

The answer is NO. The set is not closed under addition:
 $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ neither $x = 0$ nor $y = 0$

(c) $\{(x; y; z) | x = 1\}$ No. The zero vector is not in this set.

(d)
$$\{(x; y; z) | x = y \text{ and } z = 0\}$$

Yes. This is the solution set of a homogeneous linear system $x - y = 0, z = 0$

2. For the vector $v = (1, -1, 1, -1, 1) \in R^5$ find a linear system AX = 0 whose solution space is the span of v. **Answer: First find the solution base for**

the matrix A has these as rows:

3. Find a basis of the solution space of
$$\begin{pmatrix} 1 & -1 & 2 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = 0.$$

4. For the vectors $\alpha_1 = (1, 0, 2, 2)$, $\alpha_2 = (1, 1, 0, 3)$, $\alpha_3 = (1, 4, 0, 0)$ find a linear homogeneous system which has the span of these vectors as solution space. Answer: We first set up the matrix *A* which has the three vectors as rows. Then we solve AX = 0

 $\begin{pmatrix} 1 & 0 & 2 & 2 \\ 1 & 1 & 0 & 3 \\ 1 & 4 & 0 & 0 \end{pmatrix}$ has row echelon form: $\begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ It corresponds to the

linear system

 $x_1 = -4x_4$ $x_2 = x_4$ $x_3 = x_4$

5. (a) Decide whether the vector (4, 11, 12) is in the span of u = (1, 2, 3) and v = (2, 5, 6). You have to justify your answer.

$$x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 11 \\ 12 \end{pmatrix}$$
 leads to the inhomogeneous linear system

AX = B with matrix

$$\left(\begin{array}{rrr}1 & 2 & 4\\2 & 5 & 11\\3 & 6 & 12\end{array}\right)$$
 which has row-echelon form $\left(\begin{array}{rrr}1 & 0 & -2\\0 & 1 & 3\\0 & 0 & 0\end{array}\right)$ from which we

read off the solutions:

$$x_1 = -2$$
 and $x_2 = 3$. Indeed:
 $-2\begin{pmatrix} 1\\2\\3 \end{pmatrix} + 3\begin{pmatrix} 2\\5\\6 \end{pmatrix} = \begin{pmatrix} 4\\11\\12 \end{pmatrix}$. Therefore, (4, 11, 12) is in the span of u

and v.

(b) Find an equation for the plane generated by the vectors u = (1,2,3) and v = (2,5,6)

Here we could use the vector product. But this wouldn't work in higher dimensions. We use the general method as explained in the practice sheet. We first solve AX = 0 where A is the matrix which has u and v as its rows.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 6 \end{pmatrix} \text{ has nullspace basis:} \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}. u \text{ and } v \text{ Then}$$
$$\begin{pmatrix} -3 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = -3x_1 + x_3 = 0$$

is the equation we are looking for.

6. Prove that u = (1,0,0), v = (1,1,0), and r = (1,1,1) form a basis of R^3 . Let *T* be the linear map where T(u) = (2,1,3), T(v) = (1,1,2), T(r) = (0,0,1). What is T(6,5,3)? **Answer**:

The rank of the matrix which has the three vectors u, v, r as rows is 3. But we can also argue that the first vector is not 0, the second vector is not a multiple of the first one and the third vector is not a linear combination of the first two vectors. Therefore, u, v, r are linearly independent and form a basis of \mathbb{R}^3 .

According to the formula (6.1.3) in the book one has that the A matrix for T is

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \text{ is easy enough to compute.} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1}$$
$$\mathsf{Therefore, } A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \text{ .}$$
$$\mathsf{Then, } T(6, 5, 3) = A \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & -1 \\ 3 & -1 & -1 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 10 \end{pmatrix} \text{ .}$$

7. The following is a bonus problem. What is the dimension of the vector space of all symmetric $n \times n$ matrices?

I leave you in suspense.