Test 3 Math4377

Each problem is worth 20 points. You cannot use any books, notes or calculators. You have 110 minutes to complete the test.

- 1. Label the following statements as true or false.
 - **a**. Only invertible matrices are products of elementary matrices. T
 - **b.** If E is an $n \times n$ elementary matrix then E is invertible. T
 - **c.** $T: U \to V$ is injective if and only if the only vector α such that $T(\alpha) = 0$ is $\alpha = 0$. T
 - **d**. If for a linear map $T: U \to B$ the vectors $u_1, u_2, \dots u_k$ are linearly dependent $T(u_1), T(u_2), \dots, T(u_k)$ are linearly dependent. T
 - **e**. If for a linear map $T: U \to B$ the vectors $u_1, u_2, \dots u_k$ are linearly independent then $T(u_1), T(u_2), \dots, T(u_k)$ are linearly independent. F
 - **f**. If the homogeneous system AX = 0 of n equations in n –unknowns has a non-trivial solution then there is some B such that AX = B has no solution. T
 - **g.** Given $\alpha_1, \alpha_2 \in V$ and $\beta_1, \beta_2 \in W$, there exists a linear transformation $T: V \to W$ such that $T(\alpha_1) = \beta_1$ and $T(\alpha_2) = \beta_2$. F
 - **h**. Let *A* be an $n \times m$ -matrix. The set of $B \in \mathbb{R}^m$ for which AX = B has a solution is a subspace of \mathbb{R}^m . T
 - **i.** There is a linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ for which N(T) = R(T)F
 - j It is impossible for the product of two non-square matrices to be invertible. F
- **2** Find the matrix of the linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ such that $T(e_1) = e_1, T(e_2) = e_2 + e_1, T(e_3) = e_3 + e_2$, that is $T(e_j) = e_j + e_{j-1}, j = 2, ..., n$. Find N(T) and R(T).

Solution:

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)$$

 $N(T) = \{0\}, R(T) = \mathbb{R}^4$

3 Find a basis of the solution space for $x_1 + x_5 = 0$, $x_3 + x_4 = 0$. **Solution**:

4 Find the equation ax + by + cz + dw = 0 of the hyperplane in R^4 which is the span the following vectors $\alpha_1 = (-1, 1, 0, 0), \alpha_2 = (1, 1, 0, 0), \alpha_3 = (1, 1, 0, 1)$. **Solution**:

$$\left(\begin{array}{cccc} -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right) N = \left(\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}\right)$$

The single equation is z = 0

5 Find a linear system for which the span of $\alpha_1 = (1,0,1,1,1), \alpha_2 = (0,1,3,1,4), \alpha_3 = (1,1,4,2,5)$ is the solution space. **Solution**:

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & 4 \\
1 & 1 & 4 & 2 & 5
\end{pmatrix}$$
 row echelon form
$$\begin{pmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

There are three base vectors $\begin{bmatrix} -1 \\ -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ which gives us three

equations $-x_1 - 3x_2 + x_3 = 0, -x_1 - x_2 + x_3 = 0, -x_1 - 4x_2 + x_5 = 0$

6 Prove that the inverse $T^{-1}: U \to V$ of an invertible linear map T is linear. **Solution**: Let $\beta_1 \in V, \beta_2 \in V \text{ and } T(\alpha_1) = \beta_1, T(\alpha_2) = \beta_2. \text{ Then } T^{-1}(c_1\beta_1 + c_2\beta_2) = c_1T^{-1}(\beta_1) + c_2T^{-1}(\beta_2) = c_1\alpha_1 + c_2\alpha_2 \text{ because}$ $T(c_1\alpha_1 + c_2\alpha_2) = c_1T(\alpha_1) + c_2T(\alpha_2) = c_1\beta_1 + c_2\beta_2.$

7

- **a.** Let A be an $n \times n$ matrix for which $A^2 = 0$. Prove that A cannot be invertible. **Solution**: If A were invertible Then $A^{-1}A^2 = A = 0$, a contradiction.
- **b**. Suppose that AB = 0 for some non-zero matrix B. Could A be invertible? Prove your claim. Solution: If A were invertible then $A^{-1}(AB) = A^{-1}0 = 0$. Thus B = 0, a contradiction.
- **8** Find the general solution of the linear system:

$$x + y - z + 3w = 1$$

$$x - y - z + 2w = 1$$

The matrix of this system is $\begin{pmatrix} 1 & 1 & -1 & 3 & 1 \\ 1 & -1 & -1 & 2 & 1 \end{pmatrix}$, row echelon form: $\begin{pmatrix} 1 & 0 & -1 & \frac{5}{2} & 1 \\ 0 & 1 & 0 & \frac{1}{2} & 0 \end{pmatrix}$ which gives us the general solution:

$$X_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_{3} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} -\frac{5}{2} \\ -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}$$

9 Can you find linear maps $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ such that $S \circ T = id_{\mathbb{R}^2}$ where $id_{\mathbb{R}^2}$ is the identity map on \mathbb{R}^2 ? Can you find such maps T and S such that $T \circ S = id_{\mathbb{R}^3}$?

You must prove $y \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ our answers. **Solution**: T has matrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ and

S has matrix $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and we see that $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. There is no T, S such that $T \circ S = id_{\mathbb{R}^3}$ because this would yiel that

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ would be surjective which is impossible.

10 Let V be a vector space and let $T: V \to V$ be linear. Prove that $T^2 = T_0$ (the zero map) if and only if $R(T) \subseteq N(T)$. **Solution**: $T^2 = T_0 \Rightarrow R(T) \subseteq N(T)$. Let $\beta \in R(T)$. Then $\beta = T(\alpha)$ for some α . But then $T(\beta) = T^2(\alpha) = 0$. Thus $\beta \in N(T)$. For the other implication $R(T) \subseteq N(T) \Rightarrow T^2 = T_0$ Let $\alpha \in V$. Then $T(\alpha) \in R(T) \subseteq N(T)$. Thus $T(\alpha) \in N(T)$ which is $T(T(\alpha)) = T^2(\alpha) = 0$