You have the full class period to complete the test. Every problem is worth 20 points.

1. Mark as true or false.
a. A function f is injective if $f(a)=f(b)$ only if $a=b$. T
b. A function f is injective if $a=b$ then $f(a)=f(b)$. F
c. A function f is injective if $f(a) \neq f(b)$ then $a \neq b$. F
d. A function f is injective if $a \neq b$ then $f(a) \neq f(b)$. T
2. Let A be a set and $P(A)$ be the power set of A. Let $f: A \rightarrow P(A)$. Mark as true or false.
a. The function f cannot be surjective. T
b. The subset $C=\{a \mid a \in f(a)\} \notin \operatorname{im}(f) \mathrm{F}$
3. Find a surjection $f: \mathbb{N} \rightarrow \mathbb{N}$ from the set \mathbb{N} of natural numbers to itself which is not injective. Answer: $n \mapsto\left\lfloor\frac{n}{2}\right\rfloor$
4. Use the Cantor-Bernstein Theorem in order to prove that there is a function $f:[0,1] \rightarrow[0,1]$ such that for every $y \in[0,1]$ one has that $f^{-1}(y)$ is a two-element set. Hint: $[0,1]=\left[0, \frac{1}{2}\right) \cup\left[\frac{1}{2}, 1\right]$ and each of the two disjoint intervals is equivalet to $[0,1]$.
Answer: There is a bijection $f_{1}:\left[0, \frac{1}{2}\right) \rightarrow[0,1], f_{2}:\left[\frac{1}{2}, 1\right] \rightarrow[0,1]$. Then for $f_{1} \cup f_{2}$ you have for every $y \in[0,1]$ exactly one $x_{1} \in\left[0, \frac{1}{2}\right)$ and one $x_{2} \in\left[\frac{1}{2}, 1\right]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y$
5. Determine whether each of these statements are true or false.
a) $\emptyset \in \emptyset F$
b) $\emptyset \in\{\{\emptyset\}\} \mathrm{F}$
c) $\{\emptyset\}=\{\emptyset, \emptyset\} T$
d) $\{\emptyset\} \subseteq\{\{\emptyset, \emptyset\}\} \mathrm{T}$
6. Define the successor A^{+}of the set A. Find the successor of
a) $A=\emptyset$
b) $A=\{\emptyset\}$
Answer: $\mathbf{A}^{+}=A \cup\{A\}$;a) $A=\emptyset, A^{+}=\emptyset \cup\{\emptyset\}=\{\emptyset\} \quad$ b) $A=\{\emptyset\}, A^{+}=\{\emptyset\} \cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}$
7. Determine whether the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto if,
a) $f(m)=\left\lfloor\frac{n}{2}\right\rfloor, T$
b) $f(m)=m^{2}+1 F$
c) $f(m)=m-1 \mathrm{~T}$
d) $f(m)=m^{3} \mathrm{~F}$
8. Let $f: A \rightarrow B$ be a surjective function from A onto B. Let C be any subset of B. Prove that $f\left(f^{-1}(C)=C\right.$. Answer: $d \in f\left(f^{-1}(C)\right.$ iff $d=f(a)$ where $a \in f^{-1}(C)$ iff $f(a) \in C$. That is $d=f(a) \in C$. This is $f\left(f^{-1}(C) \subseteq C\right.$. Let $c \in C$. Then because f is surjective, $f(a)=c$ for some $a \in f^{-1}(C)$. This is $C \subseteq f\left(f^{-1}(C)\right.$
9 Assume for sets A and B that the power sets are unequal, that is $P(A) \neq P(B)$. Can you conclude that $A \neq B$? You must prove your answer.

Answer: yes. We know from the practice sheet that $P(A)=P(B)$ yields $A=B$. So $A \neq B$ yields $P(A) \neq P(B)$. One can also argue that $A \neq B$ gives us without loss of generality some $a \in A$ which is not in B. But then $\{a\} \in P(A)$ but $\{a\} \notin P(B)$.
10. a)Is the set $\{\emptyset\}$ the power set of a set? b)Is $\{\emptyset,\{\{\emptyset\}\}\}$, the power set of a set? You must prove your answers. Answer: a) yes, $\{\emptyset\}=P(\emptyset)$ b) yes, $\{\emptyset,\{\{\emptyset\}\}\}=P(\{\{\emptyset\}\})$

