Test 2, Math3336

You have the full class period to complete the test. Every problem is worth 20 points.

- **1**. Mark as true or false.
 - **a**. A function f is injective if f(a) = f(b) only if a = b. T
 - **b**. A function f is injective if a = b then f(a) = f(b). F
 - **c**. A function *f* is injective if $f(a) \neq f(b)$ then $a \neq b$. F
 - **d**. A function f is injective if $a \neq b$ then $f(a) \neq f(b)$. T
- **2**. Let *A* be a set and P(A) be the power set of *A*. Let $f : A \to P(A)$. Mark as true or false.
 - **a**. The function f cannot be surjective. T
 - **b**. The subset $C = \{a | a \in f(a)\} \notin im(f)$ F
- Find a surjection f : N → N from the set N of natural numbers to itself which is not injective. Answer: n → L n/2 J
- **4**. Use the Cantor-Bernstein Theorem in order to prove that there is a function $f: [0,1] \rightarrow [0,1]$ such that for every $y \in [0,1]$ one has that $f^{-1}(y)$ is a two-element set. Hint: $[0,1] = [0,\frac{1}{2}) \cup [\frac{1}{2},1]$ and each of the two disjoint intervals is equivalet to [0,1]. **Answer: There is a bijection** $f_1: [0,\frac{1}{2}) \rightarrow [0,1], f_2: [\frac{1}{2},1] \rightarrow [0,1]$. **Then for** $f_1 \cup f_2$ **you have for every** $y \in [0,1]$ **exactly one** $x_1 \in [0,\frac{1}{2})$ **and one** $x_2 \in [\frac{1}{2},1]$ **such that** $f(x_1) = f(x_2) = y$
- 5. Determine whether each of these statements are true or false.
 a) Ø ∈ Ø F
 b) Ø ∈ {{Ø}} F
 - c) $\{\emptyset\} = \{\emptyset, \emptyset\} T$ d) $\{\emptyset\} \subseteq \{\{\emptyset, \emptyset\}\} T$
- 6. Define the successor A^+ of the set A. Find the successor of $a | A = \emptyset$ b) $A = \{\emptyset\}$ Answer: $A^+ = A \cup \{A\}; a | A = \emptyset, A^+ = \emptyset \cup \{\emptyset\} = \{\emptyset\}$ b) $A = \{\emptyset\}, A^+ = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}$
- 7. Determine whether the function $f : \mathbb{Z} \to \mathbb{Z}$ is onto if, a) $f(m) = \lfloor \frac{n}{2} \rfloor$, T b) $f(m) = m^2 + 1$ F c) f(m) = m - 1 T d) $f(m) = m^3$ F
- **8**. Let $f : A \twoheadrightarrow B$ be a surjective function from A onto B. Let C be any subset of B. Prove that $f(f^{-1}(C) = C$. Answer: $d \in f(f^{-1}(C) \text{ iff } d = f(a) \text{ where } a \in f^{-1}(C) \text{ iff } f(a) \in C$. That is $d = f(a) \in C$. This is $f(f^{-1}(C) \subseteq C$. Let $c \in C$. Then because f is surjective, f(a) = c for some $a \in f^{-1}(C)$. This is $C \subseteq f(f^{-1}(C))$
- **9** Assume for sets A and B that the power sets are unequal, that is $P(A) \neq P(B)$. Can you conclude that $A \neq B$? You must prove your answer.

Answer: yes. We know from the practice sheet that P(A) = P(B) yields A = B. So $A \neq B$ yields $P(A) \neq P(B)$. One can also argue that $A \neq B$ gives us without loss of generality some $a \in A$ which is not in B. But then $\{a\} \in P(A)$ but $\{a\} \notin P(B)$.

10. a) Is the set $\{\emptyset\}$ the power set of a set? b) Is $\{\emptyset, \{\{\emptyset\}\}\}\)$, the power set of a set? You must prove your answers. Answer: a) yes, $\{\emptyset\} = P(\emptyset)$ b) yes, $\{\emptyset, \{\{\emptyset\}\}\} = P(\{\{\emptyset\}\}\})$