November 11, 2016

- 1. State the well-ordering principle for the set of natiural numbers. Answer: Read the book!
- 2. State the principle of Mathematical Induction and prove it from the well-ordering principle. Answer: **Explained in class**. **Read the book**!
- **3**. Prove by mathematical induction.
 - a. $n < 2^n$ Answer: **Done in class**
 - **b.** $\sum_{j=1}^{n} \frac{1}{2^{j}} = \frac{2^{n}-1}{2^{n}}$ Answer: The formula is correct for n = 1: $\frac{1}{2} = \frac{2^{1}-1}{2}$; assume that $\sum_{j=1}^{n} \frac{1}{2^{j}} = \frac{2^{n}-1}{2^{n}}$ holds for some *n*. Then $\sum_{j=1}^{n+1} \frac{1}{2^{j}} = \sum_{j=1}^{n} \frac{1}{2^{j}} + \frac{1}{2^{n+1}} = \frac{2^{n}-1}{2^{n}} + \frac{1}{2^{n+1}} = \frac{2(2^{n}-1)+1}{2^{n+1}} = \frac{2^{n+1}-2+1}{2^{n+1}} = \frac{2^{n+1}-2+1}{2^$
- 4. Prove by mathematical induction.
 - a. Prove that 3 divides $n^3 + 2n$ whenever n is a positive integer. Answer: For n = 1 the formula is true: $3|1^3 + 2 = 3$. Assume that for some $n \in N$ one has that $3|n^3 + 2n$. Claim: $3|(n+1)^3 + 2(n+1)$. we have that $(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2 = (n^3 + 2n) + 3(n^2 + n + 3)$ and we see that $3|n^3 + 2n$ by assumption and $3|3(n^2 + n + 3)$ and therefore $3|(n+1)^3 + 2(n+1)$. Thus $3|n^3 + 2n$ for every $n \in N$.
 - **b**. Prove that 2|n(n + 1) whenever *n* is a positive integer. Answer: The claim is true for n = 1 : 2|1(1 + 1) = 2; now assume the claim for some *n*. Then we wish to show that 2|(n + 1)(n + 2). But $(n + 1)(n + 2) = (n^2 + n) + 2(n + 1)$ is divisible by 2 because each summand is.
 - c. Prove that $6|n^3 n$ whenever n is a positive integer. Answer: For n = 1 we have that $6|1^3 1 = 0$. Now assume $6|n^3 n$ holds for some $n \in N$. we wish to show that $6|(n + 1)^3 (n + 1)$. Now, $(n + 1)^3 (n + 1) = n^3 + 3n^2 + 3n + 1 n 1 = (n^3 n) + 3(n^2 + n)$. By the previous part, $2|n^2 + n = n(n + 1)$. So $6|3(n^2 + n)$ and $6|(n + 1)^3 1$.
- **5**. Give a recursive definition of the sum n + m of non-negative natural numbers. **Answer**: Let *n* be any natural number. We wish to define for any $m \in N$ the sum n + m. We start at m = 0. Then n + 0 = n; assume that we know what n + m is. Then define $n + m^+ = (n + m)^+$.
- 6. Give a recursive definition of propositional formulas in ¬, ∧, ∨, ⇒ and prove by structural induction that for every propositional formula the number of left parentheses is the same as the number of right parentheses. Answer: Done in class. Answer: Study Example 11 in the book on page 354.