Name:

You have the full class period to complete the test. You cannot use any books or notes.
This test is worth $\mathbf{3 0 0}$ points.

1. 60 pts.

Prove or disprove whether the formula is a tautology or not:
a. $(\neg p \wedge(p \rightarrow q)) \rightarrow \neg q$ Answer: Not a tautology. $p=F, q=T$ makes
$(\neg p \wedge(p \rightarrow q)) \rightarrow \neg q=\mathbf{F}$
b. $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ Answer: Tautology. To make $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ false you need to make $(\neg q \wedge(p \rightarrow q))=T$ and $\neg p=F$, that is $p=T$. Now $(\neg q \wedge(p \rightarrow q))=T$ needs $\neg q=T$, that is $q=F$ but then $(p \rightarrow q)$ needs $p=F$. Thus $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ cannot be made false.
c. $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ Answer: Tautology. In order to make $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ false we need to make $[(p \rightarrow q) \wedge(q \rightarrow r)]=T$ and $(p \rightarrow r)=F$, that is $p=T$ and $r=F$. Now $[(p \rightarrow q) \wedge(q \rightarrow r)]=T$ gives us $(p \rightarrow q)=T$ and $(q \rightarrow r)=T$. But we already have $p=T$, thus we get $q=T$ and then $r=T$. This contradicts $r=F$.
d. $[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)] \rightarrow r$ Answer:Tautology. The formula is F if $[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)]=T$ and $r=F$. But then $(p \rightarrow r) \wedge(q \rightarrow r)=T$ requires $p=F$ and $q=F$ and we get $(p \vee q)=F$ and $[(p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)]=T$ is impossible.
2. 60 pts.

Mark as true or false. The implication P only if Q is equivalent to: Answers P only if Q
a) P is sufficient for Q. T
b) Q is sufficient for P.F
$\equiv P \rightarrow Q$
c) P is necessary for $\mathrm{Q} . \mathrm{F}$
d) Q is necessary for P . \mathbf{T}
e) P if Q. F
f) Q if P. T
3. 30 pts.

Determine whether the following arguments are valid or invalid. Answers: I am going to the movies $=M$, It is raining $=R$;
a. Only if it is raining I am going to the movies. It is not raining. Thus I am not going to the movies. Answer: Valid. We have $M \rightarrow R$ which is the same as $\neg R \rightarrow \neg M$. Thus $\neg R$ yields $\neg M$.
b. If it is raining I am going to the movies. It is not raining. Therefore I am not going to the movies. Answer: Invalid. We have $R \rightarrow M$ and $\neg R$. We cannot conclude $\neg M$. I might go to the movies for other reasons.
c. If it is raining I am going to the movies. I am going to the movies. Therefore it is raining. Answer: Invalid. Given $R \rightarrow M$ and M does not lead to R.
4. 40 pts.

Find the conjunctive normal form for $P=[(p \leftrightarrow q) \rightarrow r]$. (Hint: Find out when $P=F$)

Answer: $(\neg p \vee \neg q \vee r) \wedge(p \vee q \vee r)$. To get to this, we need to find the disjunctive normal form for $\neg P$, that is where P is false. But this is exactly the case when $(p \leftrightarrow q)=T$ and $r=F$. Thus $\neg P=(p \wedge q \wedge \neg r) \vee(\neg p \wedge \neg q \wedge \neg r)$. By DeMorgan we now get $P=(\neg p \vee \neg q \vee r) \wedge(p \vee q \vee r)$
5. 60 pts.

Decide whether the following formulas are equivalent. You don't have to give an explanation.
a. $\forall x(P(x) \rightarrow Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$ Answer: Not equivalent. If we choose predicates P and Q for which we have $\neg P(a)$ then $\forall x P(x)$ is false and regardless of Q, one has that the RHS $\forall x P(x) \rightarrow \forall x Q(x)$ is true. Now, if we choose P that $P(b)$ holds and for Q that $\neg Q(b)$ is true then $P(b) \rightarrow Q(b)$ is false. Thus $\forall x(P(x) \rightarrow Q(x))$ is false.
b. $\forall x(P(x) \wedge Q(x))$ and $\forall x P(x) \wedge \forall x Q(x)$. Answer: Equivalent. Both sides say $Q(a)$ for every a.
c. $\forall x(P(x) \vee Q(x))$ and $\forall x P(x) \vee \forall x Q(x)$. Answer: Not equivalent. Let $P(x)$ say that x is a boy and $Q(x)$ say that x is a girl. Then $\forall x(P(x) \vee Q(x))$ is true but $\forall x P(x) \vee \forall x Q(x)$ is not.
6. 50 pts.

Let $L(x, y)$ be the predicate " x likes to buy the car y ", $K(x, y)$ the predicate " x knows everything about the car y ", and $M(y)$ the predicate "car y has good milage". Then formalize:
a. Everybody likes to buy some car. Answer: $\forall x \exists y L(x, y)$.
b. There is some car everybody likes to buy. Answer: $\exists y \forall x L(x, y)$
c. $x=$ paul likes to buy a car y only if it has good milage. Answer:
$\forall y L($ paul, $y) \rightarrow M(y)$
d. $x=$ paul knows everything about car $y=$ honda. Answer: K (paul, honda)
e. There is a car nobody likes to buy Answer: $\exists y \forall x \neg L(x, y)$

