Name:

You have the full class period to complete the test. You cannot use any books or notes.

This test is worth 300 points.

1. 60 pts.

Prove or disprove whether the formula is a tautology or not:

- **a.** $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ **Answer: Not a tautology**. p = F, q = T makes $(\neg p \land (p \rightarrow q)) \rightarrow \neg q = \mathbf{F}$
- **b.** $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ Answer: Tautology. To make $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ false you need to make $(\neg q \land (p \rightarrow q)) = T$ and $\neg p = F$, that is p = T. Now $(\neg q \land (p \rightarrow q)) = T$ needs $\neg q = T$, that is q = F but then $(p \rightarrow q)$ needs p = F. Thus $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ cannot be made false.
- **C.** $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ Answer: Tautology. In order to make $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ false we need to make $[(p \rightarrow q) \land (q \rightarrow r)] = T$ and $(p \rightarrow r) = F$, that is p = T and r = F. Now $[(p \rightarrow q) \land (q \rightarrow r)] = T$ gives us $(p \rightarrow q) = T$ and $(q \rightarrow r) = T$. But we already have p = T, thus we get q = T and then r = T. This contradicts r = F.
- **d.** $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ Answer: Tautology. The formula is *F* if $[(p \lor q) \land (p \to r) \land (q \to r)] = T$ and r = F. But then $(p \to r) \land (q \to r) = T$ requires p = F and q = F and we get $(p \lor q) = F$ and $[(p \lor q) \land (p \to r) \land (q \to r)] = T$ is impossible.

2. 60 pts.

Mark as true or false. The implication P only if Q is equivalent to: Answers P only if Q

	a) P is sufficient for Q. T	b) Q is sufficient for P. F
$\equiv P \to Q$	c) P is necessary for Q. F	d) Q is necessary for P. T
	e) P if Q. F	f) Q if P. T

3. 30 pts.

Determine whether the following arguments are valid or invalid. Answers: *I am going to* the movies = M, It is raining = R;

- **a**. Only if it is raining I am going to the movies. It is not raining. Thus I am not going to the movies. Answer: Valid. We have $M \to R$ which is the same as $\neg R \to \neg M$. Thus $\neg R$ yields $\neg M$.
- **b**. If it is raining I am going to the movies. It is not raining. Therefore I am not going to the movies. Answer: Invalid. We have $R \rightarrow M$ and $\neg R$. We cannot conclude $\neg M$. I might go to the movies for other reasons.
- **c.** If it is raining I am going to the movies. I am going to the movies. Therefore it is raining. **Answer: Invalid. Given** $R \rightarrow M$ and M does not lead to R.

4. 40 pts.

Find the conjunctive normal form for $P = [(p \leftrightarrow q) \rightarrow r]$. (Hint: Find out when P = F)

Answer: $(\neg p \lor \neg q \lor r) \land (p \lor q \lor r)$. To get to this, we need to find the disjunctive normal form for $\neg P$, that is where *P* is false. But this is exactly the case when $(p \leftrightarrow q) = T$ and r = F. Thus $\neg P = (p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$. By DeMorgan we now get $P = (\neg p \lor \neg q \lor r) \land (p \lor q \lor r)$

5. 60 pts.

Decide whether the following formulas are equivalent. You don't have to give an explanation.

- **a**. $\forall x(P(x) \rightarrow Q(x))$ and $\forall xP(x) \rightarrow \forall xQ(x)$ Answer: Not equivalent. If we choose predicates *P* and *Q* for which we have $\neg P(a)$ then $\forall xP(x)$ is false and regardless of *Q*, one has that the RHS $\forall xP(x) \rightarrow \forall xQ(x)$ is true. Now, if we choose *P* that P(b) holds and for *Q* that $\neg Q(b)$ is true then $P(b) \rightarrow Q(b)$ is false. Thus $\forall x(P(x) \rightarrow Q(x))$ is false.
- **b**. $\forall x(P(x) \land Q(x))$ and $\forall xP(x) \land \forall xQ(x)$. Answer: Equivalent. Both sides say Q(a) for every *a*.
- **C.** $\forall x(P(x) \lor Q(x))$ and $\forall xP(x) \lor \forall xQ(x)$. Answer: Not equivalent. Let P(x) say that x is a boy and Q(x) say that x is a girl. Then $\forall x(P(x) \lor Q(x))$ is true but $\forall xP(x) \lor \forall xQ(x)$ is not.

6. 50 pts.

Let L(x, y) be the predicate "*x likes to buy the car y*", K(x, y) the predicate "*x* knows everything about the car *y*", and M(y) the predicate "car *y* has good milage". Then formalize:

- **a**. Everybody likes to buy some car. **Answer**: $\forall x \exists y L(x, y)$.
- **b**. There is some car everybody likes to buy. **Answer**: $\exists y \forall x L(x, y)$
- **c**. x = paul likes to buy a car y only if it has good milage. **Answer**: $\forall yL(paul, y) \rightarrow M(y)$
- **d**. x = paul knows everything about car y = honda. **Answer**: K(paul, honda)
- **e**. There is a car nobody likes to buy **Answer**: $\exists y \forall x \neg L(x, y)$