Test 3, Math3336

November 7, 2017

You have the full class period to complete the test. You cannot use any books or notes. Every problem is worth 20 points.

- **1**. Mark as true or false. $n, m, k, l \in \mathbb{Z}$
 - (**a**) *n*|0 T
 - (**b**) 0|1 F
 - (c) If n|k and m|l then $n \cdot m|k \cdot l$ T
 - (d) If n|k and n|l then n|k-l T
- **2**. Let *a* be an integer and *d* be a positive integer. Define the *Divison Algorithm*, that is, the division of *a* by *d* with quotient *q* and remainder *r*.
 - **Answer**: $a = qd + r, 0 \le r < d$
 - **a**. What is *r* if 256 is divided by 9? **Answer**: $256 = 28 \cdot 9 + 4, r = 4$
 - **b**. What is *r* if 100 is divided by 9? **Answer**: $100 = 11 \cdot 9 + 1, r = 1$
 - **c**. What is q and what is r if -1 is divided by 1? **Answer**: $-1 = (-1) \cdot 1 + 0, q = -1, r = 0$
 - **d**. What is q and what is r if n is divided by n 1? **Answer**: $n = 1 \cdot (n - 1) + 1, q = 1, r = 1$
- **3**. Let *a* and *b* be integers and let *m* be a positive integer. Define that *a* is congruent to *b* modulo *m*. What are the elements congruent to $0 \mod m$? Prove that every integer *a* is congruent mod *m* to a unique

 $0 \le r < m$. **Answer**: $a \equiv b \mod m$ iff m|a - b. If $a = q_1m + r_1, b = q_2m + r_2$ then $a - b = (q_1 - q_2)m + (r_1 - r_2)$. We may assume that $0 \le r_1 \le r_2 < m$. Then m|a - b iff $m|r_1 - r_2$ which is possible only if $r_1 = r_2$.

We have that $a = q \cdot m + r$, $a - r = q \cdot m$ and therefore $a \equiv r \mod m$.

- **4**. Evaluate these quantities. Your answer should be a congruence class $[x]_8$ where $0 \le x < 8$.
 - **a**. $[5]_8 + [7]_8$ **Answer**: $[5]_8 + [7]_8 = [12]_8 = [4]_8$
 - **b**. $[5]_8 \cdot [7]_8$ **Answer**: $[5]_8 \cdot [7]_8 = [35]_8 = [3]_8$
- 5. Convert the decimal expansion of each of these integers to a binary and ternary expansion.
 - **a**. 67 **Answer**: $67 = (1000011)_2 = (2111)_3$
 - **b.** 85 **Answer**: $85 = (1010101)_2 = (10011)_3$
- 6. Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - **a**. 2,5 **Answer**: $1 = (-2) \cdot 2 + 1 \cdot 5$
 - **b**. 16,18 **Answer**: $2 = (-1) \cdot 16 + 1 \cdot 18$
 - c. 82,83 Answer: $1 = (-1) \cdot 82 + 1 \cdot 83$
 - **d**. 6,8 **Answer**: $2 = (-1) \cdot 6 + 1 \cdot 8$
- 7.
- a. Prove that mod *n* the class of n 1 has an inverse. Find[14]⁻¹₁₅. **Answer**: $(n - 1)(n - 1) = n^2 - 2n + 1 = 1 \mod n \cdot [n - 1]_n^{-1} = [n - 1]$

 $[14]_{15}^{-1} = [14]_{15}$; also $1 = (-1) \cdot (n-1) + 1 \cdot n, [1]_n = [-1]_n \cdot [n-1]_n$, thus $[n-1]_n^{-1} = [-1]_n = [-1+n]_n = [n-1]_n$

- **b.** Solve 14x + 3 = 1mod 15 **Answer**: $14x = -2, x = 14 \cdot (-2) = -28 = 2 \mod 15$
- 8. Let [n,m] denote the least common multiple of n and m, and (n,m) denote the greatest common divisor. Prove that $[n,m] \cdot (n,m) = n \cdot m$ **Answer**: $n = p_1^{n_1} \cdot \ldots \cdot p_k^{n_k}, m = p_1^{m_1} \cdot \ldots \cdot p_{k-1}^{m_k}, [n,m] = p_1^{\max(n_1,m_1)} \cdot \ldots \cdot p_k^{\max(n_k,m_k)},$ $(n,m) = p_1^{\min(n_1,m_1)} \cdot \ldots \cdot p_k^{\min(n_k,m_k)}, n \cdot m = p_1^{n_1} \cdot \ldots \cdot p_k^{n_k} \cdot p_1^{m_1} \cdot \ldots \cdot p_{k-1}^{m_k} = p_1^{n_1+m_1} \cdot \ldots \cdot p_k^{n_k+m_k},$ but note $n_1 + m_1 = \min(n_1,m_1) + \max(n_1,m_1) \dots$
- **9**. Prove that 8 cannot have a multiplicative inverse mod 12. **Answer**: $[8]_{12} \cdot [9]_{12} = [0]_{12}$ where $[9]_{12} \neq [0]_{12}$. If 8 had an inverse mod 12 then we would get $[8]_{12}^{-1} \cdot ([8]_{12} \cdot [9]_{12}) = [9]_{12} = [8]_{12}^{-1} \cdot [0]_{12} = [0]_{12}$ a contradiction.
- **10**. Let m_1 and m_2 be relatively prime integers and that $b_1m_1 + b_2m_2 = 1$.
 - **a**. Prove that $b_1m_1 \equiv 1 \mod m_2$ and $b_2m_2 \equiv 1 \mod m_1$. **Answer**: We have that $b_2m_2 = 0 \mod m_2$, and $b_1m_1 = 0 \mod m_1$
 - **b.** $x \equiv a_1 \mod m_1$ and $x \equiv a_2 \mod m_2$ has $x = a_1b_2m_2 + a_2b_1m_1$ as a solution. **Answer**: If $x = a_1b_2m_2 + a_2b_1m_1$ then $\mod m_1$ we get $x \equiv a_1b_2m_2 \equiv a_1$ because $b_2m_2 \equiv 1 \mod m_1$ and $a_2b_1m_1 \equiv 0 \mod m_1$ etc
 - **c**. Find some x such that $x \equiv 2 \mod 4$ and $x \equiv 3 \mod 5$. **Answer**: $1 = (-1) \cdot 4 + 1 \cdot 5$, so $b_1 = -1, b_2 = 1, x = 2 \cdot 1 \cdot 5 + 3 \cdot (-1) \cdot 4 = 10 - 12 = -2$. Check: $-2 \equiv 2 \mod 4\sqrt{}, -2 \equiv 3 \mod 5\sqrt{}$. we also have that $x = (-2) \equiv (-2) + 4 \cdot 5 \equiv 18 \mod 4$ as well as $x = -2 \equiv 18 \mod 5$