Axioms of a vector space

A vector space is an algebraic system *V* consisting of a set whose elements are called *vectors* but vectors can be anything. A geometric interpretation of vectors as being directed arrows helps our understanding of the rules and laws of vector algebra, but it is not necessary: The inventory of a car repair shop can be represented as a vector whose components stand for batteries, tires alternators etc. Thus $\alpha = (20,4,3,8)$ may stand for 20 tires, 4 batteries , 4 tires, 3 alternators, 8 break pedals,... This interpretation of the quadruple (20,4,3,8) is void of any geometric interpretation. What matters is that we can add n - tuples of numbers

 $\alpha = (a_1, a_{2,...}, a_n), \beta = (b_1, b_2, ..., b_n)$ can be added component wise:

$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and multiplied vectors by numbers (scalars):

$$r.\alpha = (r \cdot a_1, r \cdot a_2, \dots, r \cdot a_n)$$

here *r* can be any real number. If this is the case then we speak about a vector space over the field \mathbb{R} of real numbers. But we can choose any field, like rational numbers \mathbb{Q} or complex numbers \mathbb{C} . The book deals with fields in the Appendix. In this course it is enough that *scalars*, that is numbers, are just reals.

Now, with respect to addition, vectors form what is known a *commutative group*.

Associative law: $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$

Existence of a neutral element or unit: $\alpha + 0 = 0 + \alpha = \alpha$

Additive Inverse: $\alpha + (-\alpha) = (-\alpha) + \alpha = 0$

Commutativity $\alpha + \beta = \beta + \alpha$

The binary operation is here denoted as + and called addition. If the binary group operation is not commutative then the operation is called multiplication and usually denoted as *. We will later see that $n \times n$ – matrices can be multiplied and the product is associative. The $n \times n$ identity matrix $I_{n \times n}$ is the unit with respect to matrix multiplication and some matrices have an inverse. But multiplication of matrices is not commutative.

Addition of vectors α , β ,... and multiplicaton by scalars *r*,*s*.. are related by four more axioms or rules:

associative law: $(r \cdot s) \cdot \alpha = r \cdot (s \cdot a)$ distributive laws: $(r + s) \cdot \alpha = r \cdot \alpha + s \cdot \alpha$, $r \cdot (\alpha + \beta) = r \cdot \alpha + r \cdot \beta$ unitary law: $1 \cdot \alpha = \alpha$

A mathematical structure V with an operation called addition and multiplication by scalars r, s, ... from a field F is called a vectorspace if it satisfies the eight axioms above. Linear algebra is an axiomatic theory which has many realizations, that is models of the eight axioms.

Theorem For any group $(G, *, e, {}^{-1})$ one has that for given g and h one has that the equation g * x = h has a unique solution $x = g^{-1} * h$.

Proof: Assume that there is such an *x* such that g * x = h. Then multiplication from the left by g^{-1} yields $g^{-1} * (g * x) = g^{-1} * h$. Then by associativity we get $(g^{-1} * g) * x = e * x = x = g^{-1} * h$. This show that there is at most one such *x*. Namely $x = g^{-1} * h$. But we have that $g * (g^{-1} * h) = h$ This proves existence of such an *x*. **Theorem** For vector spaces over a field *F* we have that

$$r.\alpha = 0$$
 iff $r = 0$ or $\alpha = 0$

Proof. If r = 0 then $0.\alpha = 0$. Here we need distributivity to connect the $0 \in F$ for addition with scalar multiplication: $0.a = (0+0).\alpha = 0.\alpha + 0.\alpha$. Now because $0.\alpha = 0.\alpha + 0$ we get by the previous theorem that $0.\alpha = 0$.

Now assume that $r \neq 0$. Then the field element *r* has a multiplicative inverse r^{-1} . But then $(r^{-1} \cdot r) \cdot \alpha = 1 \cdot \alpha = \alpha$ by the unitary law. If we assume that $r \cdot \alpha = 0$ and $r \neq 0$ then $r^{-1} \cdot r \cdot \alpha = r^{-1} \cdot 0$ where $r^{-1} \cdot r \cdot \alpha = (r^{-1} \cdot r) \cdot \alpha = \alpha$ and $r^{-1} \cdot 0 = 0$ by the first part of the theorem. Thus $\alpha = 0$.

A careful analysis of the proof shows that all 8 axioms for vector spaces have been used.

Let *V* be any vector space over the field *F* and let *A* be any set. Assume that *T* is any one-one and onto map, a bijection, between *V* and *A*. Then the vectorspace structure of *V* can be transported from *V* to *A* via *T* :

Let α and β be elements of *A*. Then define and addition \oplus on *A*:

$$\alpha \oplus \beta = T(T^{-1}(\alpha) + T^{-1}(\beta))$$

Let *c* be an element of *F* and α be an element of *A*. Then define a multiplication c_* of *c* and $\alpha : c_*\alpha = T(c, T^{-1}(\alpha))$

With these definitions of addition and multiplication by field elements, the set *A* becomes a vectorspace like *V*. The elements of *V* are given just other names taken from *A*. The operations on *A* are defined so that *T* and T^{-1} are isomorphisms:

 $T^{-1}(\alpha \oplus \beta) = T^{-1}(T(T^{-1}(\alpha) + T^{-1}(\beta))) = T^{-1} + T^{-1}(\beta), \ T^{-1}c_*\alpha) = T^{-1}(T(c,T^{-1}(\alpha))) = T^{-1}(\alpha))$

Let $V = \mathbb{R}^2$ and A be the set \mathbb{R}^2 again but where we have forgotten that \mathbb{R}^2 is a vector space with the usual vector addition and multiplication by scalars. Choose a and b be arbitrarily. Then T(x,y) = (x + a, y + b) is a one-one and onto map from $V = \mathbb{R}^2$ to $A = \mathbb{R}^2$. If $\alpha = (u, v), \beta = (w, z)$ are in A then $T^{-1}(u, v) = (u - a, v - b),$ $T^{-1}(w, z) = (w - a, z - b)$ and (u - a, v - b) + (w - a, z - b) = (u + w - 2a, v + z - 2b) and $\alpha \oplus \beta = T((u + w - 2a, v + z - 2b) = (u + w - a, v + z - b).$ For example $(u, v) \oplus (a, b) = (u + a - a, v + b - b) = (u, v)$. Thus with respect to \oplus , the zero vector is (a, b). Thus any element of \mathbb{R}^2 can be the zero vector. We can map $V = \mathbb{R}^2$ to $A = (0, \infty) \times (0, \infty)$ using the exponential map: $(x, y) \to (e^x, e^y)$. Then (1, 1) is the zero for \oplus .