
Subspaces and Linear Systems
A subset U of a vectorspace V is called closed if
(a) 0 ∈ U where 0 is the zero vector of V.
(b) If  and  are elements of U then   .
(c) If c ∈ F and  ∈ U then c. ∈ U

Thus on U addition and multiplication of vectors can be defined, just as restrictions of
those operations from V to U.That 0 belongs to U is equivalent to saying that U is
non-empty: If  is any vector in U then by (c) the vector 0.  0 belongs to U. It is
clear that U becomes a vector space in its own right. The axioms are all equations,
like commutativity for addition. And these axioms hold for all vectors of V but then also
for those in U.

Closed subsets of a vector space V are also called subspaces. It is easy to see the

Theorem The intersection of closed subsets of a vector space is closed
Proof. Let Ui, i ∈ S be a non-empty system of closed subsets. Each Ui contains 0.
Thus 0 ∈ U  Ui . If  and  are in U. Then  and  belong to evey Ui. Because
each Ui is closed we have a   ∈ Ui for every i.Thus    ∈ U  Ui . Further, if
 ∈ Ui then for every Ui one has that a ∈ Ui.Because Ui is closed, c. ∈ Ui for
every i. Hence c. ∈ U  Ui .

The intersection of the empty family of subspaces is defined as 0 which is the
smallest closed subset of V

If S is any subset of V, then there is a smallest closed subset of V which contains S. It
is called the span of S and denoted as  S :

 S  U|U closed,S ⊆ U

If S  1,… ,k is a finite subset of V, then

 1,… ,k  c1.1  c2.2 …ck.k|ci ∈ F

is the set of all linear combinations of the i. In particular,    c.|c ∈ F and
 ,  c.  d.|c,d ∈ F.
Let V  Fn.Closed subsets of V are given by solutions of finitely many linear
homogeneous equations in n unknownsx1,x2,… ,xn.Such a system looks like

a11x1  a12x2 …a1nxn  0

a21x1  a22x2 …a2nxn  0

…

am1x1  am2x2 …amnxn  0

Clearly the zero vector is a solution of such a homogeneous system and if  ∈ Fn and  ∈ Fn

1



are solutions then any linear combination c.  d. is a solution. Linear systems are most
conviniently described in matrix notation: AX  0 where A is the m  n −matrix of the
coefficients and X is the column of n many unknowns.

2x  y − 3z  0

x − 2y  z  0

are two equations in 3 unknowns which in matrix notation looks like

2 1 −3

1 −2 1

x

y

z


0

0

We can solveany system of linear equations by

(a) multiplying any equation by some c ≠ 0;
(b) adding a multiple of one equation to another one;
(c) interchanging the order of the equations.

Obviously these operations do not change solvability of a system (in case of inhomogeneous
system) and in case of consistency these operations do not change the solution set. An
inhomogeneous sytem might be unsolvable, for example the system

x  y  0

2x  2y  1

is unsolvable.
The three operations (a),(b),(c) applied to the matrix A of the system AX  0 lead to the
elementary row operations on A. In our example of two eqations in three unknowns we get

2 1 −3

1 −2 1
→

1 −2 1

2 1 −3
→

1 −2 1

0 5 −5
→

1 −2 1

0 1 −1
→

1 0 −1

0 1 −1

We interchanged the order of the two rows, the added −2 − times the first row to the second
row , then divided the second row by 5 and finally added 2 − times the second row to the first
row.
The new matrix stands for the equational system

x  0.y − z  0

0.x  y − z  0

which is

x  z

y  z

We may choose for z anything and compute x as z.Choosing for z  1 we get
x  1,y  1, z  1. The solutions of this system are given as th espan of 1,1,1.
In general, let AX  B be a linear inhomogeneous system . The three operations allow us to
find all solutions, in case of consistency. But first we have a general
.

2



Theorem. Let X1 and X2 be solutions of AX  B. Then X1 − X2  X is a solution of the
homogeneous system AX  0.
Proof. AX  AX1 − X2  AX1 − AX2  B − B  0.

In order to solve AX  B we only need to find a particular solution Y0 of AX  B .Then all
solutions of AX  B are given by Y  Y0  X where X is any solution of AX  0.

The matrix for AX  B is:

a11 a12 … a1n b1

a21 a22 … a2n b2

… … … … …

am1 am2 … amn bm

Besides the three elementary row operations we allow also an interchange of columns of A
which amounts to interchangin unknowns xi with xj. We must keep track of such changes.
Then if A  0 then in case that B  0 the system is consistent and every X ∈ Fn is a solution of
AX  0. In case that A ≠ 0, we hae that there is a non-zero entry in A. We may assume that the
first colunm contains a non-zero entry and we may assume that a11 ≠ 0.Dividing the first row
by a11 we achieve that the first entry in the first row is 1. Adding multiple of the first row to
the other rows we get that the first column turns into the first unit vector. For example if the
first entry of the second row is c21 then just add −c21 of the first row to the second row, The c21

entry turns to 0. Similarly, for the other entries of the first column. The matrix version of our
inhomogeneous system AX  B is now

1 c12 … c1n c1

0 c22 … c2n c2

… … … … …

0 cm2 … cmn cm

. We now look at the remainder matrix

c22 … c2n c2

… … … …

cm2 … cmn cm

. If all cij are zero, then in case that one of the cj for j ≧ 2 is different

from 0 we have reached an inconsitency 0  cj. We could divide the jth − row by cj to get the
canonical contradiction 0  1. If all cj  0 then we have reduced the system AX  B only to
the one equation
x1  c12x2 …c1nxn  c1 or x1  c1 − c12x2 −…−c1nxn.We may assign arbitray values to
x2,… ,xn and determine x1 according to the equation x1  c1 − c12x2 −…−c1nxn. If we choose
x2 … xn  0 then a particular solution of AX  B is Y0  c1, 0,… , 0.Choosing x2,… ,xn

arbitraily we get n − 1 solutions X2  x2−c12, 0,…0,… ,Xn  xn0,0,… ,−c1n where

X  x2X2 …xnXn

is the general solution of the homogeneous equation AX  0.For example

2x  y  3z  u  5
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is one inhomogeneous equation in 4 unknowns. It is equivalent to

x  5
2
− 1

2
y − 3

2
z − 1

2
u

A particular solution is given by choosing y  z  u  0 as Y0   5
2 , 0,0,0. The general

solution of the homogeneous eqaution is

X  y. − 1
2

,1,0,0  z. − 3
2

,0,1,0  u. − 1
2

,0,0,1

and the general solution of 2x  y  3z  u  5 is
Y  Y0  X  5,0,0,0  y. − 1

2 , 1,0,0  z. − 3
2 , 0,1,0  u. − 1

2 , 0,0,1
Now continuing with the case that in

c22 … c2n c2

… … … …

cm2 … cmn cm

not all cij are zero. Then, as before we may assume that c22 ≠ 0.

Dividing the second row by c22 we change c22 entry to 1. Adding multiples of the second row
to all other rows our orignal matrix equation AX  B changed to

1 0 … d1n d1

0 1 … d2n d2

… … … … …

0 0 … dmn dm

If all dij  0 for i  3 then all dj for j must be zero for consistency. Otherwise we have 1  0.
If dij  0 for i  3 and dj  0 for j  3 then the system AX  B has been solved. For example

x  2z − 3u  5

y − z − 2u  8

is equivalent to

x  5 − 2z  3u

y  8  z  2u

Hear z and u can be chosen arbitrarily. In order to get a particular solution, we may chooses
z  u  0 and we get

Y0  5,8,0.0 as particular solution of the inhomogeneous system

and

Xz  z. −2,1,1,0 and Xu  u. 3,2,0,1 are two linearly independent solutions of the homogeneous system

They are linearly independent because z. −2,1,1,0  u. 3,2,0,1  0,0,0,0 forces
z  u  0. The general solution of

x  2z − 3u  5

y − z − 2u  8

is

X  5,8,0,0  z. −2,1,1,0  u. 3,2,0,1

The general method of solving an equational system AX  B leads in case of consistency to an
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equivalent system

x1  c1r1xr1  c1r2xr2 …c1nxn
x

 c1

x2  c2r1xr1  c2r2xr2 …c2nxn
x

 c2

…

xr  crr1xr1  crr2xr2 …crnxn
x

 cr

In case of inconsistency, you have an additional equation

0  1.

The system is equivalent to

x1  c1 − c1r1xr1 − c1r2xr2 −…−c1nxn
x

x2  c2 − c2r1xr1 − c2r2xr2 −…−c2nxn
x

…
xr  cr − crr1xr1 − crr2xr2 −…−crnxn

x

x1,x2,… ,xr are expressed in terms of free variables xr1,xr2,… ,xn. If we choose them all 0,
then we get a particular solution

Y0  c1,c2,… ,cr, 0, 0,… , 0 of the inhomogeneous system

The number r is called the row-rank of A. It is the dimension of the subspace generated by the
rows of the matrix A.
The general solution of the homogeneous system is

X  xr1Xr1  xr2Xr2 …xnXn

where
Xr1  −c1r1, − c2r1,… ,−crr1, 1,0,… , 0,…Xn  −c1n,−c2n,… ,crn, 0,…1
are n − r −many linearly independent solutions of the homogeneous system AX  0.The
dimension of the solution space of AX  0 is n − r.
The general solution of AX  B is

X  Y0  xr1Xr1  xr2Xr2 …xnXn

For the equational system AX  B we use matrix A but augmented by an additional right-most
column B: A|B.The three elementary row operations (a),(b),(c) transform A|B into reduced
row echelon form. SNB does this for you.
Problem 2a, page 32 of the book is an inhomogeneous system of 3 equations in 4 unknowns:

2x1 − 2x2 − 3x3  −2, 3x1 − 3x2 − 2x3  5x4  7 x1 − x2 − 2x3 − x4  −3   #   

Its matrix is
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2 −2 −3 0 −2

3 −3 −2 5 7

1 −1 −2 −1 −3

, row echelon form:

1 −1 0 3 5

0 0 1 2 4

0 0 0 0 0

according to SNB

,and now stands for the equational system:

x1 − x2  0x3  3x4  5 x1  5  x2 − 3x4

0x1  0x2  x3  2x4  4 x3  4 − 2x4

x1 and x3 are expressed in term of x2 and x4.

A particular solution is given by choosing x2  x4  0 and we get Y0  5,0,4,0 and the
general solution of the homogeneous system has basis of X2  1,1,0,0, X4  −3,0,−2,1
The general solution of the system is

X  Y0  x2X2  x4.X4  5,0,4,0  x2. 1,1,0,0  x4. −3,0,−2,1

The system 2b .page 32 are again 3 equations in 3 unknowns:

3x1 − 7x2  4x3  10

x1 − 2x2  x3  3

2x1 − x2 − 2x3  6

Its matrix is

3 −7 4 10

1 −2 1 3

2 −1 −2 6

, row echelon form:

1 0 0 −2

0 1 0 −4

0 0 1 −3

which reads x1  −2; x2  −4;

x3  −3 as unique solution

problem 2(c), p. 33 is a system of 3 equations in 4 unknowns. Which is inconsistent.

x1  2x2 − x3  x4  5

x1  4x2 − 3x3 − 3x4  6

2x1  3x2 − x3  4x4  8

Its matrix is

1 2 −1 1 5

1 4 −3 −3 6

2 3 −1 4 8

, row echelon form:

1 0 1 5 0

0 1 −1 −2 0

0 0 0 0 1

The third row gives us the contradiction 0  1.The system is not solvable.
You should do (d)-(f) of #2, p.33 using SNB.
We have seen that the solutions of a homogeneous linear system form a subspace U of
dimension n − r if r is the row-rank of A. And we know how to find a basis of U.
Now, given a subspace as the span U  1,2,… ,k  then if c ≠ 0 we can replace any
vector i by c.i. Say i  1.Then  1,2,… ,k  c.1,2,…k . Indeed
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c.1 ∈ 1,2,… ,k  and furthermore 2,…k ∈ 1,2,… ,k . It follws
 c.1,2,…n ⊆ 1,2,… ,k . We also have that 1 ∈ c.1,2,…n . Then as
before we see that  1,2,… ,k ⊆ c.1,2,…n . . Thus
 1,2,… ,k  c.1,2,…n .
We can also add to any i a multiple of any other j. For example, replace 1 by 1  c2.
Then  1,2,… ,k  1  c2,2,… ,k .We notice that 1  c2 ∈ 1,2,… ,k 
but also 1 ∈ 1  c2,2,… ,k  because 1  1  c2 − c2  0.3 −…0.k. Then
as before it follows that  1,2,… ,k  1  c2,2,… ,k .

If V  Fn then we take the k  n −matrix A which has the i as its rows. Because the 3
elementary row operations don’t change the space U generated by the rows, the non-zero rows
in the reduced row echelon form give us a basis of U. Example: Decide whether the given
three vectors span 3 :

A 

−2 0 3

1 3 0

2 4 −1

, row echelon form:

1 0 − 3
2

0 1 1
2

0 0 0

The 3 vectors of A span a 2 −dimensional subspace which is generated by 1,0,− 3
2  and

0,1, 1
2 .We could also argue that the first vector is a linear combination of the scond and third

vector. This is actually the problem 3a,page 32. We set up the problem as
x. 1,3,0  y. 2,4,−1  −2,0,3 which leads to 3 equations in two unknowns x and y :
x  2y  −2
3x  4y  0
−y  3
This is easily solvable: y  −3,3x  −4y, 3x  12,x  4; and y  −3,x  4 solves
4. 1,3,0 − 3. 2,4,−1  −2,0,3
Recall that a basis B  1,…k of a vector space V is a linearly independent and
generating set..That is
(a) V  1,…k ;
(b) 1,…k is linearly independent.
Conditions (a) and (b) are equivalent to
(c) Every vector  is a unique linear combination of vectors in
B :   c1.1  c2.2   cn.n where the components ci are unique.

Then one has the fundamental

Theorem. Assume that the vector space V has a finite generating set. Then V has a finite basis
and all bases have the same number of elements.

There are many different proofs for this theorem. The book presents it as a Corollary of the

Replacement Theorem (Grassman). Let G  1,… ,n be a generating set of n − many
elements and L  1,… ,m be a linearly independent subset of V. Then
(a) m ≤ n;
(b) There are m − many vectors  in G which can be replaced by ′s and the set where  ′s are
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replaced by ′s also generates V Say without loss of generality 1,…m can be replaced by
1,… ,m such that G′  1,… ,m,m1,… ,n generates V.

Proof. We are going to show that one of the  ′s can be replaced by 1. We have that
1  c1.1  c2.2 …cnn because G is generating. Because 1 ≠ 0,one of the ci must be
different from zero. Without loss of generality, we may assume that c1 ≠ 0. But then
1  1 − c2/c1.2 −…cn/c1.n. That is 1 ∈ 1,2,… ,n . Clearly also
2,…n ∈ 1,2,… ,n . This shows 1,… ,n ∈  1,2,… ,n .But then
V  1,2,… ,n  and G1 .1,2,… ,n is generating V. We now get
2  c1.1  c2.2 …cn.n. We see that one of the coefficients for the  ′s must be
different from 0 because otherwise 2 would be a multiple of 1, contradicting that the ′s are
linearly independent. Without loss of generality we may accume that c2 ≠ 0.Thus
2 ∈ 1,2,… ,n . And clearly 1,2,3,…n ∈ 1,2,… ,n .Thus
 1,2,3,…n  V ⊆ 1,2,… ,n .Hence G2  1,2,… ,n is generating etc
until all ′s have replaced  ′s.

If B  1,…k is a basis and B ′  1,…l another one then k ≤ l because B is
generating and B ′ linearly independent. But by symmetry l ≤ k and therefore k  l. All bases
have the same number of elements.

Example.
Let Pn be the space of real polynomials of degree ≤ n. It has basis 1,x,… ,xn.Thus
dimPn  n  1. (1,x,… ,xn are linearly independent because
a0  a1x  a2x2 …anxn  0 where 0 is the function being constant 0. But then we would
have in a0  a1x  a2x2 …anxn a polynomial with infinitely many zeroes. It follows from
algebra that a polynomial of degree n has at most n −many roots.)
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