Name:

1. Define that the relation R is an equivalence on the set A. Answer: R is a binary relation on A which is reflexive, symmetric and transitive. \backslash
2. Define that π is a partition of the set A. How are equivalence relations on A and partitions of A related? Answer: a partition π of a set A is a collection of non-empty subsets of A whose union is A and any two sets of π are either the same or disjoint.
3. What is the partition of the largest equivalence $A \times A$ on A ? And what is the partition for the smallest equivalence Δ on A ? Answer: the largest equivalence has $\pi=\{A\}$ as partitions, the smallest equivalence $\Delta=\{(a, a) \mid a \in A\}$ decomposes A into singletons $\pi=\{\{a\} \mid a \in A\}$
4. Let $A=\{a, b, c, d, e, f, g\}$. What are the classes of the smallest equivalence relation that contains the following pairs $\{(a, c),(e, c),(d, f),(g, d),(b, e)\}$? Answer: $\{a, c, e, b\},\{d, f, g\}$
5. a. Let $f: A \rightarrow B$ be any function from the set A to the set B. Define a relation R_{f} on A by $(a, b) \in R_{f}$ if and only if $f(a)=f(b)$. Explain why R_{f} is an equivalence relation. Answer: This is obvious from basic properties of equality: $a \sim a$ because $f(a)=f(a)$, if $a \in b$, that is $f(a)=f(b)$, then $f(b)=f(a)$, that is $b \in a$. Transitivity is $a \sim b, b \sim c$ yields $a \sim c$. Because $f(a)=f(b), f(b)=f(c)$ yields $f 9 a)=f(c)$
b. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be the parabola, that is $f(x)=x^{2}$. What do the equivalence classes look like?Answer: $\{0\},\{x,-x \mid x>0\}$
6. a. Let $A=\{a, b, c, d, e, f, g\}$ and $B=\{1,2$,$\} and let f$ be the function for which one has that $f(a)=1, f(b)=1, f(c)=1, f(d)=2, f(e)=1, f(f)=2, f(g)=2$. What is the partition of the equivalence relation R_{f} for f ? Answer: $\{\{a, b, c, e\}\{d, f, g\}\}$
b. Let $f: A \rightarrow B$ be a surjection from A to B. Assume that A has n-many elements and B has m-many elements. What can you say about the number k of equivalence classes for the equivalence relation R_{f} ?
i. $k=n$;
ii. $k=m ; \sqrt{ }$
iii. none of the above.
7. a. Define that P is a partial order of the set A. Answer: a partial order is a) reflexive: $a \leq a$, b) anti-symmetric: $a \leq b$ and $b \leq a$ only if $a=b$.c) transitive: $a \leq b, c \leq d$ yields $a \leq c$.,
b. Show that the relation a divides b is a partial order on the set N of natural numbers. Is there a minimum or maximum of this partial order? Explain your answer. Answer We have that $a \mid b$ iff $\exists_{k} k \cdot a=b$. We have $a \mid a$ because $1 \cdot a=a$, if $a \mid b$ and $b \mid c$ then $a \cdot k=b, b \cdot l=c$ but then $a \cdot(k \cdot l)=c$ This gives transitivity. If $a \mid b$ and $b \mid a$ then $a \cdot k=b$ and $b \cdot l=a$ and therefore $a \cdot(k \cdot l)=a$ which gives $k \cdot l=1$ which for natural numbers means $k=l=1$. Notice $1 \mid a$ for every a and $a \mid 0$ which makes 1 the
minimum and 0 the maximum of (N, \mid)
c. Let (P, \prec) be a finite partially ordered set. Explain how the partial order \prec can be extended to a compatible total order \leq. Illustrate this process where $P=\{a, b, c, d, e, f, g\}$ and where $a \prec c, b \prec c, c \prec d, d \prec e, d \prec f, b \prec g$. Answer: We pick the set M_{1} of minimal elements of P and order them arbitrarily. Then we continue with $P \backslash M_{1}$ etc. In the given example, $M_{1}=\{a, c\}$. We set $a<b$. The set $P \backslash M_{1}=\{c, d, e, f, g\}$ has $M_{2}=\{c, g\}$ as minimal elements. we continue $a<b<g<c$. Then we need to find the minimal elements of $P \backslash M_{1} \cup M_{2}=\{d, e, f\}$ which is just $M_{3}=\{d\}$. which gives us $a<b<g<c<d$. Finally $P \backslash M_{1} \cup M_{2} \cup M_{3}=\{e, f\}$ and a total order of P is $a<b<g<c<d<e<f$.
8. a. What does it mean that sets a and b are equivalent? State the Cantor-Bernstein theorem. Answer: There is a bijection between the sets a and b. Cantor Bersnstein says that a and b are equivalent if there is and injection from a to b and an injection from b to a.
b. Let $\mathrm{R}^{+}=\mathrm{R} \cup\{+\infty\}$ be the set of real numbers extended by a new element, called $+\infty$. Is there a bijection from R onto R^{+}? Explain! Answer: Yes, there is. We obviously have an injection from \mathbb{R} to $\mathbb{R} \cup\{\infty\}$. In order to get an injection from $\mathbb{R} \cup\{\infty\}$ we map \mathbb{R} bijectively to $[0,1)$ and ∞ to 1 . And then $[0,1]$ injectively to \mathbb{R}
