Name:

- 1. Define that the relation *R* is an equivalence on the set *A*. Answer: *R* is a binary relation on *A* which is reflexive, symmetric and transitive.∖
- **2**. Define that π is a partition of the set *A*. How are equivalence relations on *A* and partitions of *A* related? Answer: a partition π of a set *A* is a collection of non-empty subsets of *A* whose union is *A* and any two sets of π are either the same or disjoint.
- What is the partition of the largest equivalence A × A on A? And what is the partition for the smallest equivalence Δ on A? Answer: the largest equivalence has π = {A} as partitions, the smallest equivalence Δ = {(a, a)|a ∈ A} decomposes A into singletons π = {{a}|a ∈ A}
- **4**. Let $A = \{a, b, c, d, e, f, g\}$. What are the classes of the smallest equivalence relation that contains the following pairs $\{(a, c), (e, c), (d, f), (g, d), (b, e)\}$? Answer: $\{a, c, e, b\}, \{d, f, g\}$
- **5. a.** Let $f : A \to B$ be any function from the set A to the set B. Define a relation R_f on A by $(a,b) \in R_f$ if and only if f(a) = f(b). Explain why R_f is an equivalence relation. Answer: This is obvious from basic properties of equality: $a \sim a$ because f(a) = f(a), if $a \in b$, that is f(a) = f(b), then f(b) = f(a), that is $b \in a$. Transitivity is $a \sim b, b \sim c$ yields $a \sim c$. Because f(a) = f(b), f(b) = f(c) yields f9a) = f(c)
 - **b**. Let $f : \mathbb{R} \to \mathbb{R}$ be the parabola, that is $f(x) = x^2$. What do the equivalence classes look like?Answer: $\{0\}, \{x, -x | x > 0\}$
- 6. **a**. Let $A = \{a, b, c, d, e, f, g\}$ and $B = \{1, 2, \}$ and let f be the function for which one has that f(a) = 1, f(b) = 1, f(c) = 1, f(d) = 2, f(e) = 1, f(f) = 2, f(g) = 2. What is the partition of the equivalence relation R_f for f? Answer: $\{\{a, b, c, e\}, \{d, f, g\}\}$
 - **b**. Let $f : A \to B$ be a surjection from *A* to *B*. Assume that *A* has *n* –many elements and *B* has *m* –many elements. What can you say about the number *k* of equivalence classes for the equivalence relation R_f ?
 - **i**. k = n;
 - ii. $k = m; \sqrt{}$
 - iii. none of the above.
- **7. a.** Define that *P* is a partial order of the set *A*. Answer: a partial order is a) reflexive: $a \le a, b$) anti-symmetric: $a \le b$ and $b \le a$ only if a = b, c) transitive: $a \le b, c \le d$ yields $a \le c$.
 - **b**. Show that the relation *a divides b* is a partial order on the set N of natural numbers. Is there a minimum or maximum of this partial order? Explain your answer. Answer We have that a|b iff $\exists_k k \cdot a = b$. We have a|a because $1 \cdot a = a$, if a|b and b|c then $a \cdot k = b, b \cdot l = c$ but then $a \cdot (k \cdot l) = c$ This gives transitivity. If a|b and b|a then $a \cdot k = b$ and $b \cdot l = a$ and therefore $a \cdot (k \cdot l) = a$ which gives $k \cdot l = 1$ which for natural numbers means k = l = 1. Notice 1|a for every a and a|0 which makes 1 the

minimum and 0 the maximum of (N, |)

- c. Let (P, ≺) be a finite partially ordered set. Explain how the partial order ≺ can be extended to a compatible total order ≤. Illustrate this process where
 P = {a,b,c,d,e,f,g} and where a ≺ c,b ≺ c,c ≺ d,d ≺ e,d ≺ f,b ≺ g. Answer: We pick the set M₁ of minimal elements of P and order them arbitrarily. Then we continue with P\M₁ etc. In the given example, M₁ = {a,c}. We set a < b. The set P\M₁ = {c,d,e,f,g} has M₂ = {c,g} as minimal elements. we continue
 a < b < g < c. Then we need to find the minimal elements of P\M₁ ∪ M₂ = {d,e,f} which is just M₃ = {d}. which gives us a < b < g < c < d. Finally
 P\M₁ ∪ M₂ ∪ M₃ = {e,f} and a total order of P is a < b < g < c < d < e < f.
- 8. **a**. What does it mean that sets *a* and *b* are equivalent? State the Cantor-Bernstein theorem. Answer: There is a bijection between the sets *a* and *b*. Cantor Bersnstein says that *a* and *b* are equivalent if there is and injection from *a* to *b* and an injection from *b* to *a*.
 - **b**. Let $\mathbb{R}^+ = \mathbb{R} \cup \{+\infty\}$ be the set of real numbers extended by a new element, called $+\infty$. Is there a bijection from \mathbb{R} onto \mathbb{R}^+ ? Explain! Answer: Yes, there is. We obviously have an injection from \mathbb{R} to $\mathbb{R} \cup \{\infty\}$. In order to get an injection from $\mathbb{R} \cup \{\infty\}$ we map \mathbb{R} bijectively to [0, 1) and ∞ to 1. And then [0, 1] injectively to \mathbb{R}