Equivalence using quantifiers.
1.4 \#43 : Are

$$
\forall x(P(x) \rightarrow Q(x)) \text { and } \forall x P(x) \rightarrow \forall x Q(x)
$$

logically equivalent? Obviously not. Let $P(x)$ stand for " x is German" and $Q(x)$ stand for "x likes Sauerkraut" then

$$
\forall x(P(x) \rightarrow Q(x)) \text { stands for "all Germans like Sauerkraut" }
$$

while
$\forall x P(x) \rightarrow \forall x Q(x)$ stands for "if everybody is German then everybody likes Sauerkraut"
The book gives as answer for this problem: Let $P(x)$ be any propositional function that is sometimes true and sometimes false and let $Q(x)$ be any propositional function that is always false. Then $\forall x(P(x) \rightarrow Q(x))$ is false, namely where $P(x)$ is true, but $\forall x P(x) \rightarrow \forall x Q(x)$ is true, because $\forall x P(x)$ is false.
To be concrete, let $D=\{a, b\}$ and let a be German and b not German. Both don't like Sauerkraut. Then $\forall x(P(x) \rightarrow Q(x))$ is false, at a, but $\forall x P(x) \rightarrow \forall x Q(x)$ is true. In order to make $\forall x(P(x) \rightarrow Q(x))$ false, we only need that $Q(a)$ is false.
For a more mathematical example, we could chose $D=\mathbb{N}=$ natural numbers, $P(x)=x$ is prime, $Q(x)=x<0$. Then $\forall x P(x) \rightarrow \forall x Q(x)$ is true, because not every number x is prime, and $\forall x(P(x) \rightarrow Q(x))$ is false, where x is prime.
If we have that $P(x)$ is always true then $\forall x(P(x) \rightarrow Q(x))$ is true in case that $Q(x)$ is true for all x. Then $\forall x(P(x) \rightarrow Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$ are equivalent, namely to $\forall x Q(x)$. In our German example, being German would be equivalent to liking sauerkraut.
1.4 \#45 states that $\exists x(P(x) \vee Q(x))$ and $\exists x P(x) \vee \exists x Q(x)$ are equivalent: $\exists x(P(x) \vee Q(x))$ is true iff for some $x=c$ we have that $P(c)$ or $Q(c)$ is true iff $\exists x P(x)$ or $\exists x Q(x)$ hold.
Are $\exists x(P(x) \wedge Q(x))$ and $\exists x P(x) \wedge \exists x Q(x)$ equivalent. Obviously not. Let $D=\mathbb{N}=$ natural numbers and $P(x)=$ " x is even", $Q(x)=" x$ is odd". Then $\exists x P(x) \wedge \exists x Q(x)$ is true but $\exists x(P(x) \wedge Q(x))$ is never true.

Propositional equivalences can always be determined by setting up truth tables. A propositional function $f\left(p_{1}, \ldots, p_{n}\right)$ which is always true, like $f(p)=p \vee \neg p$, is called a tautology. Setting up a truth table for $f\left(p_{1}, \ldots, p_{n}\right)$ decides whether $f\left(p_{1}, \ldots, p_{n}\right)$ is a tautology or not. This is the only general method to decide whether a given propositional function is a tautology. If you already know that $f\left(p_{1}, \ldots, p_{n}\right)$ is a tautology then making $f\left(p_{1}, \ldots, p_{n}\right)=F$ may quickly yield a contradiction.

