Equivalence using quantifiers.

1.4 #43 : Are

$$\forall x(P(x) \rightarrow Q(x)) \text{ and } \forall xP(x) \rightarrow \forall xQ(x)$$

logically equivalent? Obviously not. Let P(x) stand for "x is German" and Q(x) stand for "x likes Sauerkraut" then

$$\forall x(P(x) \rightarrow Q(x))$$
 stands for "all Germans like Sauerkraut"

while

 $\forall x P(x) \rightarrow \forall x Q(x)$ stands for "if everybody is German then everybody likes Sauerkraut"

The book gives as answer for this problem: Let P(x) be any propositional function that is sometimes true and sometimes false and let Q(x) be any propositional function that is always false. Then $\forall x(P(x) \rightarrow Q(x))$ is false, namely where P(x) is true, but $\forall xP(x) \rightarrow \forall xQ(x)$ is true, because $\forall xP(x)$ is false.

To be concrete, let $D = \{a, b\}$ and let *a* be German and *b* not German. Both don't like Sauerkraut. Then $\forall x(P(x) \rightarrow Q(x))$ is false, at *a*, but $\forall xP(x) \rightarrow \forall xQ(x)$ is true. In order to make $\forall x(P(x) \rightarrow Q(x))$ false, we only need that Q(a) is false.

For a more mathematical example, we could chose $D = \mathbb{N}$ = natural numbers, P(x) = x is prime, Q(x) = x < 0. Then $\forall x P(x) \rightarrow \forall x Q(x)$ is true, because not every number *x* is prime, and $\forall x (P(x) \rightarrow Q(x))$ is false, where *x* is prime.

If we have that P(x) is always true then $\forall x(P(x) \rightarrow Q(x))$ is true in case that Q(x) is true for all *x*. Then $\forall x(P(x) \rightarrow Q(x))$ and $\forall xP(x) \rightarrow \forall xQ(x)$ are equivalent, namely to $\forall xQ(x)$. In our German example, being German would be equivalent to liking sauerkraut.

1.4 #45 states that $\exists x(P(x) \lor Q(x))$ and $\exists xP(x) \lor \exists xQ(x)$ are equivalent: $\exists x(P(x) \lor Q(x))$ is true iff for some x = c we have that P(c) or Q(c) is true iff $\exists xP(x)$ or $\exists xQ(x)$ hold. Are $\exists x(P(x) \land Q(x))$ and $\exists xP(x) \land \exists xQ(x)$ equivalent. Obviously not. Let $D = \mathbb{N}$ = natural numbers and P(x) = "x is even", Q(x) = "x is odd". Then $\exists xP(x) \land \exists xQ(x)$ is true but $\exists x(P(x) \land Q(x))$ is never true.

Propositional equivalences can always be determined by setting up truth tables. A propositional function $f(p_1, ..., p_n)$ which is always true, like $f(p) = p \lor \neg p$, is called a tautology. Setting up a truth table for $f(p_1, ..., p_n)$ decides whether $f(p_1, ..., p_n)$ is a tautology or not. This is the only general method to decide whether a given propositional function is a tautology. If you already know that $f(p_1, ..., p_n)$ is a tautology then making $f(p_1, ..., p_n) = F$ may quickly yield a contradiction.