A subspace of dimension n - 1 in an n – dimensionmal space is called a *hyper plane*. A hyper plane of the plane \mathbb{R}^2 is a line, and of the three dimensional space \mathbb{R}^3 it is a plane.

In \mathbb{R}^n the single equation

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$

has an n - 1 – dimensional solution space, unless all coefficients are zero. The solution space of the linear system of m –equations in n –unknowns

```
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0

a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0

\dots

a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0
```

is the intersection of *m*-many hyper planes and this intersection is of dimension n - r where *r* is the rank of the matrix *A* for this linear system Ax = 0.

Because we already know that every subspace U of \mathbb{R}^n is the solution space of a linear system we have the

Theorem. Every subspace U of \mathbb{R}^n is an intersection of hyper planes.

The union of subspaces U and V is in general not a subspace. The union may not be closed under sums. However the intersection is always a subspace. The union $U \cup V$ generates a subspace which is called the sum U + V.

$$< U \cup V >= U + V = \{u + v | u \in U, v \in V\}$$

The following theorem relates the dimensions of sum and intersectuion:

Theorem. dim $(U + V) = \dim(U) + \dim(V) - \dim(U \cap V)$.

Proof. Let e_1, \ldots, e_k be a basis of $U \cap V$. We extend it to a basis of U and to a basis of V.

So let $e_1, \ldots, e_k, u_1, \ldots, u_l$ is a basis of *U*; and $e_1, \ldots, e_k, v_1, \ldots, v_m$ a basis of *V*. We claim that

 $e_1, \ldots, e_k, u_1, \ldots, u_l, v_1, \ldots, v_m$ is a basis of U + V

This set of k + l + m –many vectors is obviously generating the sum. We need to show that it is linearly independent. So assume that

$$a_1e_1 + \dots + a_ke_k + b_1u_1 + \dots + b_lu_l + c_1v_1 + \dots + c_mv_m = 0$$

In the equation

$$a_1e_1 + \dots + a_ke_k + b_1u_1 + \dots + b_lu_l = -c_1v_1 - \dots - c_mv_m$$

the left-hand side is a vector in *U* and the right-hand side a vector in *V*. Thus both sides describe the same vector in the intersection $U \cap V$. Thus the left-hand side must be a linear combination of the e_i alone. This gives us $b_1 = ... = b_l = 0$. But then we get

$$a_1e_1 + \dots + a_ke_k + c_1v_1 + \dots + c_mv_m = 0$$

and all a_i and c_j must be zero because the e_i and v_j are a basis of V. Therefore, $\dim(U+V) = k + l + m = (k+l) + (k+m) - k = \dim(U) + \dim(V) - \dim(U \cap V)$ $\dim(U+V) = k + l + m = (k+l) + (k+m) - k = \dim(U) + \dim(V) - \dim(U \cap V)$

We know how to find a basis of U + V: We create a matrix A which has the generating vectors of U and of V as rows.

Let $U = \langle u_1, ..., u_r \rangle$ and $V = \langle v_1, ..., v_r \rangle$ then $A = (u_1|...|u_r|v_1|...|v_s)$. The non-zero rows of the row-echelon form of *A* then give us a basis of U + V And we also know how to find a linear system that has U + V as solution space. But how can we find a linear system for $U \cap V$?

But this is easy if we have equations

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$ $a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rn}x_n = 0$

for U and equations

$$b_{11}x_1 + b_{12}x_2 + \dots + b_{1n}x_n = 0$$

$$b_{21}x_1 + b_{22}x_2 + \dots + b_{2n}x_n = 0$$

$$\dots$$

$$b_{s1}x_1 + b_{s2}x_2 + \dots + b_{sn}x_n = 0$$

for *V*. The combined set of r + s –many equations gives us an equational system whose solution space is $U \cap V$. And we know how to find a basis of it.

Example:

U = <(1, 1, 0, -1), (0, 1, 3, 1) >, V = <(0, -1, -2, 1), (1, 2, 2, -2 >We get an equational system for *U* by finding a basis for the nullspace of Ax = 0

$$A = \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & 3 & 1 \end{pmatrix}, \text{ nullspace basis:} \begin{bmatrix} 3 \\ -3 \\ 1 \\ 0 \end{bmatrix}, \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \text{ Thus the two}$$
equations define $U: 3x_1 - 3x_2 + x_3 + 0x_4 = 0, 2x_1 - x_2 + 0x_3 + x_4 = 0$

Similarly
$$B = \begin{pmatrix} 0 & -1 & -2 & 1 \\ 1 & 2 & 2 & -2 \end{pmatrix}$$
, has nullspace basis: $\begin{bmatrix} 2 & 0 & 0 & 1 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$. Thus the two equations define $V : 2x_1 - 2x_2 + x_3 + 0x_4 = 0, 0x_1 + x_2 + 0x_3 + x_4 = 0$
All four equations together define $U \cap V$. Its matrix is $C = \begin{pmatrix} 3 & -3 & 1 & 0 \\ 2 & -1 & 0 & 1 \\ 2 & -2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$, has

nullspace basis:
$$\begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$
. We get that $U \cap V = <(-1, -1, 0, 1) >$

Recall that $U = \langle (1, 1, 0, -1), (0, 1, 3, 1) \rangle$, $V = \langle (0, -1, -2, 1), (1, 2, 2, -2 \rangle$ and $\dim(U + V)$ is the rank of

$$C = \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 0 & -1 & -2 & 1 \\ 1 & 2 & 2 & -2 \end{pmatrix}$$
 which is 3. Thus

 $\dim(U \cap V) = \dim(U) + \dim(V) - \dim(U + V) = 2 + 2 - 3 = 1$ which agrees with our calculations.

Example 2. Find two subspaces $U = \langle u_1, u_2 \rangle$, $V = (v_1, v_2 \rangle$ of \mathbb{R}^3 whose intersection is the line $W = \langle (1, 2, 3) \rangle$. Of course there are infinitely many planes that intersect in *W*. We want to find just two of those. If *U* is such a plane that contains *W* then it has the equation $ax_1 + bx_2 + cx_3 = 0$ where a + 2b + 3c = 0 because (1, 2, 3) is on *U*. This gives us the equation for a, b, c:

$$a + 2b + 3c = 0$$
, $a = -2b - 3c$ leads to two planes with normal vectors
 $X_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, X_3 = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix}.$

Thus the line *W* is the solution space (intersection) of a first plane with equation $-2x_1 + x_2 + 0x_3 = 0$ and has basis $u_1 = (\frac{1}{2}, 1, 0)$ and $u_2 = (0, 0, 1)$ and of a second plane $-3x_1 + 0x_2 + x_3 = 0$ and has basis $v_1 = (0, 1, 0)$ and $v_2 = (\frac{1}{3}, 0, 1)$. Thus

$$U = \langle (\frac{1}{2}, 1, 0), (0, 0, 1) \rangle$$
 and $V = \langle (0, 1, 0), (\frac{1}{3}, 0, 1) \rangle$

It is easy to verify that $2(\frac{1}{2}, 1, 0) + 3(0, 0, 1) = (1, 2, 3)$, and $2(0, 1, 1) + 3(\frac{1}{3}, 0, 1) = (1, 2, 3)$

confirming that $U \cap V = W$

Our *U* has equation $-2x_1 + x_2 + 0x_3 = 0$ and *V* has equation $-3x_1 + 0x_2 + x_3 = 0$ and the system of two equations in three unknowns

$$-2x_1 + x_2 + 0x_3 = 0$$

$$-3x_1 + 0x_2 + x_3 = 0$$

has (1,2,3) as solution.