Test 2, Math3336

You have the full class period to complete the test. Every problem is worth 20 points.

- **1**. Mark as true or false.
 - **a**. A function *f* is injective if f(a) = f(b) in case that a = b. F
 - **b**. A function f is injective if a = b then f(a) = f(b). F
 - **c**. A function f is injective if $f(a) \neq f(b)$ then $a \neq b$. F
 - **d**. A function f is injective if $a \neq b$ then $f(a) \neq f(b)$. T
- **2**. Let *A* be a set and P(A) be the power set of *A*. Let $f : A \to P(A)$. Mark as true or false.
 - **a**. The function *f* cannot be surjective. T
 - **b**. The subset $R = \{a | a \notin f(a)\} \notin im(f)$ T
- **3**. Find a bijection $f : \mathbb{N} \twoheadrightarrow \mathbb{N}$ from the set \mathbb{N} of natural numbers to itself which is not the identity. **Answer**: f(1) = 2, f(2) = 1, f(n) = n for n > 2
- **4**. Sketch a function that establishes a bijection between \mathbb{R} and the open interval (-1, 1). **Answer**: Any artangent type function will do F
- **5**. Determine whether each of these statements are true or false.

a) $\emptyset \in \{\emptyset\}$ T b) $\emptyset \in \{\{\emptyset\}\}$ F c) $\{\emptyset\} = \{\emptyset, \{\emptyset\}\}$ F d) $\{\emptyset\} \subseteq \{\{\emptyset, \emptyset\}\}$ F

- 6. Define the successor A^+ of the set A. Find the successor of a) $A = \{\emptyset, \{\emptyset\}\} A^+ = A \cup \{A\} = \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\},$ b) $A = \{a\} \qquad A^+ = A \cup \{A\} = \{a, \{a\}\}$
- 7. State the Schröder-Bernstein Theorem. Answer: Theorem Let *A* and *B*. be sets. If there is an injection from *A* to *B* and an injection from *B* to *A* then there is a bijection from *A* to *B*.
- **8**. Assume that $f : A \twoheadrightarrow B$ and $g : B \neg A$ are functions such that the composition $g \circ f$ is the identity function on A, that is g(f(a)) = a for every $a \in A$. Prove that a) g is surjective and b) f is injective. **Answer**: ad a) g(f(a) = a Thus g(b) = a for b = f(a) ad b) Assume $f(a_1) = f(a_2)$. Then $g(f(a_1) = g(f(a_2))$, thus $a_1 = a_2$.
- **9** Let $f(x) = e^x$ and g(x) = x + 1. Find $f \circ g$ and $g \circ f$. Answer: Both compositions are functions from \mathbb{R} to \mathbb{R} . $f(g(x)) = e^{x+1}$ and $g(f(x)) = e^x + 1$
- **10.** a)Is the emty set \emptyset the power set of a set? b)Is $\{\{\emptyset\}, \{\{\emptyset\}\}\}\)$, the power set of a set? You must prove your answers. **Answer**: a) The emty set cannot be the powerset of any set. Any

powerset contains the empty set. b) again, the mpty set is not a member of $\{\{\emptyset\}, \{\{\emptyset\}\}\}\}$.