Test 3, Math3336

November 8, 2018

You have the full class period to complete the test. You cannot use any books or notes. Every problem is worth 20 points.

- **1**. Mark as true or false. $n, m, k, l \in \mathbb{Z}$
 - (**a**) 1|*n* T
 - (**b**) 0|*n* **F**
 - (c) If $n|k \cdot l$ then n|k or n|l F
 - (d) If n|k and n|l then n|k+l T
- **2**. Let *a* be an integer and *d* be a positive integer. Define the *Division Algorithm*, that is, the division of *a* by *d* with quotient *q* and remainder *r*. **Answer**: $a = qd + r, 0 \le r \le d$
 - **a**. What is *r* if 200 is divided by 9? **Answer**: $200 = 22 \cdot 9 + 2, r = 2$
 - **b.** What is *r* if 1000 is divided by 9? **Answer**: $1000 = 111 \cdot 9 + 1, r = 1$
 - **c**. What is q and what is r if 1 is divided by 2? **Answer**: $1 = 0 \cdot 2 + 1, q = 0, q = 0, r = 1$
 - **d**. What is *q* and what is *r* if *n* is divided by n 1? Answer: $n = 1 \cdot (n - 1) + 1, q = 1, r = 1$
- **3**. Let *a* and *b* be integers and let *m* be a positive integer. Define that *a* is congruent to *b* modulo *m*. What are the elements congruent to $0 \mod m$? Prove that every integer *a* is congruent mod *m* to a unique $0 \le r < m$. **Answer**: $a \equiv b \mod(m)$ iff m|a - b iff $\ln a = q_1m + r_1b = q_2m + r_2$ one has that $r_1 = r_2$. We have that a = qm + r where a - r = qm, thus a - r is divisible by *m*. Hence $a \equiv r \mod(m)$ where $0 \le r < m$. If we had $a \equiv r$ and $a \equiv s$ where say r > s and both < m then r - s < m and $0 \equiv r - s$ and therefore divisible by *m*. This is absurd. A number less that *m* cannot be divisible by *m*.
- **4**. Evaluate these quantities. Your answer should be a congruence class $[x]_8$ where $0 \le x < 8$.
 - **a**. $[7]_8 + [7]_8$ **Answer**: $[7]_8 + [7]_8 = [14]_8 = [6]_{14}$
 - **b**. $[7]_8 \cdot [7]_8$ **Answer**: $[7]_8 \cdot [7]_8 = [49]_8 = [1]_8$
- 5. Convert the decimal expansion of each of these integers to a binary and ternary expansion.
 - **a**. 67 **Answer**: $67 = (1000011)_2, 67 = (2111)_3$
 - **b.** 85 **Answer**: $85 = (1010101)_{2,85} = (100011)_{3}$
- 6. Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - a. 2,7 Answer: $(2,7) = (1), 1 = (-3) \cdot 2 + 1 \cdot 7$
 - **b**. 15,20 **Answer**: $(15,20) = (5), 5 = 1 \cdot 20 1 \cdot 15$
 - c. 82,83 **Answer**: $(82,83) = (1), 1 = 1 \cdot 83 1 \cdot 82$
 - **d**. 6,8 **Answer**: $(6,8 = (2), 2 = 1 \cdot 8 1 \cdot 6$
- **7**.

- a. Prove that mod *n* the class of n 1 has an inverse. Find[14]⁻¹₁₅. **Answer**: $(n - 1)(n - 1) = n^2 - 2n + 1 = 1 \mod n$, Thus $[n - 1]_n^{-1} = [n - 1]_n$. Thus $[14]_{15}^{-1} = [14]_{15}$
- **b.** Solve $14x + 3 = 1 \mod 15$ Answer: $14x = -2, x = 14 \cdot (-2) = -28 = 2 \mod 15$, check: $14 \cdot 2 + 3 = 31 = 1 \mod 15$
- 8. Let [n,m] denote the least common multiple of n and m, and (n,m) denote the greatest common divisor. Prove that $[n,m] \cdot (n,m) = n \cdot m$ **Answer**: $n = p_1^{n_1} \cdot p_2^{n_2} \cdot \cdot \cdot p_k^{n_k}, m = p_1^{m_1} \cdot p_2^{m_2} \cdot \cdot \cdot p_k^{m_k}, s_i = \min(n_i, m_i), t_i = \max(n_i, m_i)$ then $(n,m) = p_1^{s_1} \cdot p_2^{s_2} \cdot \cdot \cdot p_k^{s_k}, [n,m] = p_1^{t_1} \cdot p_2^{t_2} \cdot \cdot \cdot p_k^{t_k}$ and obviously $[n,m] \cdot (n,m) = n \cdot m.$
- 9. Prove that 6 cannot have a multiplicative inverse mod 12. Answer: $[6] \cdot [2] = [12] = [0]$, if [6] had an inverse we could conclude that $[2] = [0] \mod 12$
- **10**. Let m_1 and m_2 be relatively prime integers and that $b_1m_1 + b_2m_2 = 1$.
 - **a**. Prove that $b_1m_1 \equiv 1 \mod m_2$ and $b_2m_2 \equiv 1 \mod m_1$. **Answer**: $\mod m_1$ we have that $b_2m_2 \equiv 0$, thus $b_2m_2 \equiv 1 \mod m_1$, similarly $\mod m_2$ we have that $b_1m_1 = 0$, thus $b_1m_1 \equiv 1 \mod m_2$,
 - **b.** $x \equiv a_1 \mod m_1$ and $x \equiv a_2 \mod m_2$ has $x = a_1 b_2 m_2 + a_2 b_1 m_1$ as a solution. **Answer**: $[x]_{m_1} = [a_1 b_2 m_2]_{m_1} = [a_1]_{m_1} [b_2 m_2]_{m_1} = [a_1], [x]_{m_2} = [a_2 b_1 m_1]_2 = [a_2]_2$
 - **c**. Find some x such that $x \equiv 2 \mod 3$ and $x \equiv 3 \mod 7$. **Answer**: $1 = (-2) \cdot 3 + (1) \cdot 7$, $x = 2 \cdot 7 + 3 \cdot (-6) = -4$,
- check: $-4 \equiv 2 \mod 3, -6 \equiv 0 \mod 3, OK; -4 \equiv 3 \mod 7, -7 \equiv 0 \mod 7, OK$