
The Greatest Common Divisor

Given numbers m and n let

m,n  d|d|m and d|n

be the set of common divisors of m and n. Because 1 divides any number, this set is
never empty. Because any number divides 0 we have that

n, 0  q|q|n

The following is a crucial observation. Let m  n ≥ 0 and m  q  n  r, 0 ≤ r  n
according to the division algorithm. Then

m,n  n, r

Clearly, if d|m and d|n then d|m − q  n that is d|r.Also, if d|n and d|r then d||m.

This observation leads to an algorithm for the gcdm,n :
m  q0n  r0,n  q1r0  r1, r0  q2r1  r2, r1  q3r2  r3, r2  q4r3  r4, . . . .
where m  n  r0  r1  r2 … rk  0 where rk is the last remainder different from 0.
Because m,n  n, r0  r0, r1  r1, r2 … rk, 0
we get

m,n  rk, 0

and the divisors of m and n are the divisors of rk. That is, m and n have a greatest
common divisor which is d  rk.We now use the common notation m,n for the
gcdm,n.

Theorem. gcdm,n  a  m  b  n for integers a and b.

This is true for r0 and then for all further remainders.

Numbers m and n are relatively prime if their greatest common divisor is 1. We now
have the following important fact:

If m,n  1 then a  m  b  n  1 for integers a and b

Actually, the converse is also true. If a  m  b  n  1 then 1 is the only common divisor
of m and n.

Corollary If e is a common divisor of m and n then e|d  m,n.
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This follows from the Theorem.

An important application of the division algorithm is that every number n  0 admits a
unique expansion to base b  0 :

n  akbk  ak−1bk−1   a1b  a0

where each ai is non-negative and ak  0.
b  10 is all-to familiar: 923  9  102  2  10  3.
For the general case, let n  q  b  a0. If we assume that q  akbk−1  ak−1bk−2   a1
then
n  q  b  a0  akbk−1  ak−1bk−2   a1  b  a0  akbk  ak−1bk−1   a1b  a0.
Let us explain the algorithm for b  2.We wish to expand 9 in base 2. We first divide 9
by 2 with remainder and continue dividing the quotients by 2 until we get quotient 0:
9  4  2  1,4  2  2  0,2  1  2  0,1  0  2  1. This gives
9  1  0  21  0  22  1  23

A number q  0 which is divisible only by 1 and by itself is called prime. Prime
numbers are 2,3,5,7,11, . . . . It is known that there are infinitely many prime numbers.
Assume that there are only finitely many prime numbers. Let n0 be their product. But
n0  1 is not divisible by any any prime smaller then n0 because n,n0  1  1. Thus
n0  1 would be prime.

Prime numbers have the following property which makes them "prime".

If q|a  b then q|a or q|b

Assume that q ∤ a.Then q and a are relatively prime, that is q,a  1 and we have
integers s and t such that s  q  t  a  1.We multiply this relation by b and we get
b  s  q  b  t  a  b. Because of q|a  b and q|s  q  b we get q|b.
It is common to call a number p which has only its trivial divisors 1 and itself irreducible
(and not prime). What we proved is that irreducible numbers are prime. the converse
is also true and easy to see. That is a number is irreducible iff it is prime.

Theorem. Any number n  0 is a unique product of prime numbers.

Proof. Assume that n is not prime. Then n  a  b with smaller numbers a and b. If we
assume that a and b are products of primes then n is a product of primes. Now let

n  p1p2pk  q1q2ql

be two factorizations of n into primes pi,qj  1.We have p1|q1  q2ql. Thus p1|q1 or
p1|q2ql. If p1|q1 then because q1 is prime we get p1  q1.Otherwise p1|q2ql which
yields p1|q2 or p1|q3ql. At any rate, because the qi are prime, p1  qj for some j. This
shows k ≤ l and by symmetry l ≤ k.Thus k  l and by an enumeration we get pi  qi.
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