## The Greatest Common Divisor

Given numbers $m$ and $n$ let

$$
(m, n)=\{d|d| m \text { and } d \mid n\}
$$

be the set of common divisors of $m$ and $n$. Because 1 divides any number, this set is never empty. Because any number divides 0 we have that

$$
(n, 0)=\{q|q| n\}
$$

The following is a crucial observation. Let $m>n \geq 0$ and $m=q \cdot n+r, 0 \leq r<n$ according to the division algorithm. Then

$$
(m, n)=(n, r)
$$

Clearly, if $d \mid m$ and $d \mid n$ then $d \mid m-q \cdot n$ that is $d \mid r$. Also, if $d \mid n$ and $d \mid r$ then $d|\mid m$.

This observation leads to an algorithm for the $\operatorname{gcd}(m, n)$ :
$m=q_{0} n+r_{0}, n=q_{1} r_{0}+r_{1}, r_{0}=q_{2} r_{1}+r_{2}, r_{1}=q_{3} r_{2}+r_{3}, r_{2}=q_{4} r_{3}+r_{4}, \ldots$.
where $m>n>r_{0}>r_{1}>r_{2}>\ldots>r_{k}>0$ where $r_{k}$ is the last remainder different from 0 .
Because $(m, n)=\left(n, r_{0}\right)=\left(r_{0}, r_{1}\right)=\left(r_{1}, r_{2}\right)=\ldots=\left(r_{k}, 0\right)$
we get

$$
(m, n)=\left(r_{k}, 0\right\}
$$

and the divisors of $m$ and $n$ are the divisors of $r_{k}$. That is, $m$ and $n$ have a greatest common divisor which is $d=r_{k}$. We now use the common notation ( $m, n$ ) for the $\operatorname{gcd}(m, n)$.

Theorem. $\operatorname{gcd}(m, n)=a \cdot m+b \cdot n$ for integers $a$ and $b$.

This is true for $r_{0}$ and then for all further remainders.

Numbers $m$ and $n$ are relatively prime if their greatest common divisor is 1 . We now have the following important fact:

$$
\text { If }(m, n)=1 \text { then } a \cdot m+b \cdot n=1 \text { for integers } a \text { and } b
$$

Actually, the converse is also true. If $a \cdot m+b \cdot n=1$ then 1 is the only common divisor of $m$ and $n$.

Corollary If $e$ is a common divisor of $m$ and $n$ then $e \mid d=(m, n)$.

This follows from the Theorem.

An important application of the division algorithm is that every number $n>0$ admits a unique expansion to base $b>0$ :

$$
n=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}
$$

where each $a_{i}$ is non-negative and $a_{k}>0$.
$b=10$ is all-to familiar: $923=9 \cdot 10^{2}+2 \cdot 10+3$.
For the general case, let $n=q \cdot b+a_{0}$. If we assume that $q=a_{k} b^{k-1}+a_{k-1} b^{k-2}+\cdots+a_{1}$ then
$n=q \cdot b+a_{0}=\left(a_{k} b^{k-1}+a_{k-1} b^{k-2}+\cdots+a_{1}\right) \cdot b+a_{0}=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}$.
Let us explain the algorithm for $b=2$. We wish to expand 9 in base 2. We first divide 9 by 2 with remainder and continue dividing the quotients by 2 until we get quotient 0 : $9=4 \cdot 2+1,4=2 \cdot 2+0,2=1 \cdot 2+0,1=0 \cdot 2+1$. This gives $9=1+0 \cdot 2^{1}+0 \cdot 2^{2}+1 \cdot 2^{3}$

A number $q>0$ which is divisible only by 1 and by itself is called prime. Prime numbers are $2,3,5,7,11, \ldots$. It is known that there are infinitely many prime numbers. Assume that there are only finitely many prime numbers. Let $n_{0}$ be their product. But $n_{0}+1$ is not divisible by any any prime smaller then $n_{0}$ because $\left(n, n_{0}+1\right)=1$. Thus $n_{0}+1$ would be prime.

Prime numbers have the following property which makes them "prime".
If $q \mid a \cdot b$ then $q \mid a$ or $q \mid b$
Assume that $q \not \backslash a$. Then $q$ and $a$ are relatively prime, that is $(q, a)=(1)$ and we have integers $s$ and $t$ such that $s \cdot q+t \cdot a=1$. We multiply this relation by $b$ and we get $b=s \cdot q \cdot b+t \cdot a \cdot b$. Because of $q \mid a \cdot b$ and $q \mid s \cdot q \cdot b$ we get $q \mid b$.
It is common to call a number $p$ which has only its trivial divisors 1 and itself irreducible (and not prime). What we proved is that irreducible numbers are prime. the converse is also true and easy to see. That is a number is irreducible iff it is prime.

Theorem. Any number $n>0$ is a unique product of prime numbers.

Proof. Assume that $n$ is not prime. Then $n=a \cdot b$ with smaller numbers $a$ and $b$. If we assume that $a$ and $b$ are products of primes then $n$ is a product of primes. Now let

$$
n=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{l}
$$

be two factorizations of $n$ into primes $p_{i}, q_{j}>1$. We have $p_{1} \mid q_{1} \cdot\left(q_{2} \cdots q_{l}\right)$. Thus $p_{1} \mid q_{1}$ or $p_{1} \mid q_{2} \cdots q_{l}$. If $p_{1} \mid q_{1}$ then because $q_{1}$ is prime we get $p_{1}=q_{1}$. Otherwise $p_{1} \mid q_{2} \cdots q_{l}$ which yields $p_{1} \mid q_{2}$ or $p_{1} \mid q_{3} \cdots q_{l}$. At any rate, because the $q_{i}$ are prime, $p_{1}=q_{j}$ for some $j$. This shows $k \leq l$ and by symmetry $l \leq k$. Thus $k=l$ and by an enumeration we get $p_{i}=q_{i}$.

