The Division Algorithm

We all learned division with remainder at elementary school. Like 14 divided by 3 has reainder $2: 14=3 \cdot 4+2$. In general we have the following

Division Algorithm. Let n be any integer and $d>0$ be a positive integer. Then you can divide n by d with remainder. That is

$$
n=q \cdot d+r, 0 \leq r<d
$$

where q and r are uniquely determined.
Given n we determine how often d goes evenly into n . Say, if $n=16$ and $d=3$ then 3 goes 5 times into 16 but there is a remainder $1: 16=5 \cdot 3+1$. This works for non-negative numbers. If $n=-16$ then in order to get a positive remainder, we have to go beyond $-16:-16=(-6) \cdot 3+2$.

Let a and b be integers. Then we say that b divides a if there is an integer c such that $a=b \cdot c$. We write $b \mid a$ for b divides a

Examples:
$n \mid 0$ for every $n: 0=n \cdot 0$; in particular $0 \mid 0$.
$1 \mid n$ for every $n: n=1 \cdot n$
Theorem. Let a, b, c be any integers.
(a) If $a \mid b$, and $a \mid c$ then $a \mid b+c$
(b) If $a \mid b$ then $a \mid b \cdot c$ for any c.
(c) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(d) If $a \mid b$ and $a \mid c$ then $a \mid m \cdot b+n \cdot c$ for any integers m and n.

Proof. For (a) we note that $b=a \cdot s$ and $c=a \cdot t$ therefore $b+c=a \cdot s$
$+a \cdot t=a \cdot(s+t)$. Thus $a \downharpoonleft b+c$.
For (b) we note that $b=a \cdot s$ and therefore $b \cdot c=(a \cdot s) \cdot c=a \cdot(s \cdot c)$ from which we get $a b \cdot c$.
For (c) we note that $b=a \cdot s$ and $c=b \cdot t$ thus $c=(a \cdot s) \cdot t=a \cdot(s \cdot t)$ which is $a \mid c$
Part (d) follows from (b) and (a).
We see that $a \mid b$ if in the division algorithm $b=q \cdot a+r$ one has that $r=0$
Let a and b be any integers and let $m>0$ be a positive integer. We say that a is congruent to b modulo $m, a \equiv b(\bmod m)$, or $a \equiv_{m} b$, in case that

$$
m \mid a-b
$$

Clearly:

$$
a \equiv_{m} a \text {; if } a \equiv_{m} b \text { then } b \equiv_{m} a \text {; if } a \equiv_{m} b \text { and } b \equiv_{m} c \text { then } a \equiv_{m} c
$$

Being congruent is a reflexive, symmetric and transitive relation between integers. It is what is called an equivalence relation. It partiones the integers into congruence classes: $[n]_{m}=\{a \mid$ $\left.a \equiv_{m} n\right\}$.

$$
\text { If } a=q \cdot m+r, 0 \leq r<m
$$

then

$$
a \equiv_{m} r
$$

Indeed $a-r=q \cdot m$.
If according to the division algorithm one has that if $a=q_{a} \cdot m+r_{a}, b=q_{b} \cdot m+r_{b}$ then $r_{a}=r_{b}$ iff $a \equiv_{m} b$
The idea is that if two positive numbers, both less than m, are congruent modulo m, then they must be equal.
Now, if $r_{a}=r_{b}$ then $a-b=q_{a} \cdot m-q_{b} \cdot m=\left(q_{a}-q_{b}\right) \cdot m$, which shows that $a \equiv_{m} b$. If on the other hand, $a \equiv_{m} b$, then $r_{a} \equiv r_{b}$ shows that two numbers, both less than m are congruent, and by the remark above, they must be equal.

Any integer a is modulo m congruent to its remainder if divided by m. Thus there are m-many congruence classes accrding to possible remainders $0,1, \ldots, m-1$.
For $m=1$ we just get one class. Any number is divisible by 1 , thus has remainder 0 if divided by 1 . We get $[0]_{1}=\mathbb{Z}$
For $m=2$ we get two classes. Remainder 0 gives us the even numbers while remainder 1 yields the odd numbers. Thus $[0]_{2}=2 \mathbb{Z},[1]_{2}=2 \mathbb{Z}+1=\{2 n+1 \mid n \in \mathbb{Z}\}$.
We get three classes modulo $3:[0]_{3}=3 \mathbb{Z},[1]_{3}=3 \mathbb{Z}+1,[2]_{3}=3 \mathbb{Z}+2$
The $(n-1)$-classes $\bmod n$ are
$[0]_{n}=n \mathbb{Z},[1]_{n}=n \mathbb{Z}+1,[2]_{n}=n \mathbb{Z}+2, \ldots,[n-1]_{n}=n \mathbb{Z}+(n-1)$

