Truth Tables, Propositional Fuctions

A Proposition is a sentence which is either true or false. In order to be true or false, the sentence has to be a declaration, like

Houston is the largest city in Texas
Houston is the capital of Texas

While the first sentence is true, the second one is not. A mathematical equation may be a proposition if it contains no variable, like
$1+2=3$
while
$1+x=3$
is not a proposition. The truth of a proposition may be unknown, like There are infinitely many prime twins, like $5,7,11,13 ; 17 ; 19, \ldots$ or Trump will be re-elected in 2020.

Using logical operators, new propositions can be formed from existing ones. They are then called compound propositions. Example for logical operators are:
Negation, $\neg, \neg p$ is read as: It is not the case that p
Conjunction, $p \wedge q$, is read as: p and q
Disjunction, $p \vee q$, is read as: p or q
Implication, $p \rightarrow q$, is read as: If p then q
Negation is a unary operaror and has the following truth table:

$$
\begin{array}{ll}
p & \neg p \\
T & F \\
F & T
\end{array}
$$

$\neg p$ is true only if p is false.
For $p=$ Houston is the capital of Texas the truth value for p is F so $\neg p=\mathbf{I t}$ is not the case that Houston is the capital of Texas, is a true statement. of course we just can say that Houston is not the capital of Texas.

The truth table for the conjunction is

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

Both propostions, p as well as q, have to be true in order for the proposition $p \wedge q$ to be true.

The truth table for the disjunction is

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

Both propostions, p as well as q, have to be false in order for the proposition $p \vee q$ to be false.

The truth table for implication is

$$
\begin{array}{ccc}
p & q & p \rightarrow q \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T
\end{array}
$$

The implication $p \rightarrow q$ is false if p is true but q is false. Otherwise $p \rightarrow q$ is true. The book lists about a dozen versions for expressing the implication $p \rightarrow q$. The most often used phrases for $p \rightarrow q$ are:

If p, then q
p is sufficient for q
q is necessary for p
p implies q
q in case that p
p only if q
q if p

The biconditional $p \leftrightarrow q$ has the truth table

```
p q p\leftrightarrowq
T T T
T F F
F T F
F F T
```

That is, $p \leftrightarrow q$ is true only if p and q have the same truth values, false otherwise. " p if and only if q " are the two propositions: " p if q ", which is $q \rightarrow p$ and " p only if q, which is $p \rightarrow q$.

A compound proposition in propositional variabes $p_{1}, p_{2}, \ldots, p_{n}$ is called a tautology if for any choice of the truth values for the p_{i} the truth value for p is T. The proposition $p \vee \neg p$ is a tautology: Clearly, $p \vee \neg p$ is T in case that p has truth value T and if p is F then $\neg p$ is T and therefore $p \vee \neg p$ is T.
A compound proposition in propositional variabes $p_{1}, p_{2}, \ldots, p_{n}$ is called a contradiction if for any choice of the truth values for the p_{i} the truth value for p is F. The proposition $p \wedge \neg p$ is a contradiction.

Two propositions p and q in propositional variables p_{1}, \ldots, p_{n} are logically equivalent if for every choice of truth values for the p_{i} the truth values for p and q are the same. That is the same as saying that $p \leftrightarrow q$ is a tautology. For this we write $p \equiv q$.

De Morgan's laws for propositions are

$$
\neg(p \wedge q) \equiv \neg p \vee \neg q, \neg(p \vee q) \equiv \neg p \wedge \neg q
$$

This is easily seen using truth tables:

p	q	$p \wedge q$	$\neg(p \wedge q)$	$\neg p$	$\neg q$	$\neg p \vee \neg q$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

For sets we have equations, like $\overline{A \cap B}=\bar{A} \cup \bar{B}$ which says the complement of the intersection of two sets is the union of the complements: If an element is not in the intersection then it doesn't belong to one of the sets. Which is quite obvious.

There are 16 different propositional functions in two variables p and q. It is quite remarkable tat they are all obtainable using just three, namely negation, conjunction and disjunction.

Theorem. Any propositional function $f\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is equivalent to a disjunction of a conjunction in p_{i} and $\neg p_{i}$.
Proof. If $f\left(p_{1}, p_{2}, \ldots, p_{n}\right)=T$ for a certain choice of truth values $v\left(p_{i}\right)$ for p_{i} which are either T or F then choose p_{i} if $v\left(p_{i}\right)=T$ and $\neg p_{i}$ if $v\left(p_{i}\right)=F$. Then take the conjunction of the p_{i} or $\neg p_{i}$ and the the disjunction of thos terms where $f\left(p_{1}, p_{2}, \ldots, p_{n}\right)=T$.
For example, if $n=3$ and $f\left(p_{1}, p_{2}, p_{3}\right)$ has the truth table

p_{1}	p_{2}	p_{3}	$f\left(p_{1}, p_{2}, p_{3}\right)$	
T	T	T	F	
T	T	F	F	
T	F	T	T	
F	T	T	T	Then
T	F	F	T	
F	T	F	F	
F	F	T	F	
F	F	F	F	

$f\left(p_{1}, p_{2}, p_{3}\right) \equiv\left(p_{1} \wedge \neg p_{2} \wedge p_{3}\right) \vee\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right) \vee\left(p_{1} \wedge \neg p_{2} \wedge \neg p_{3}\right)$ is the disjunctive
normal form for $f\left(p_{1}, p_{2}, p_{3}\right)$.
We also have that
$\neg f\left(p_{1}, p_{2}, p_{3}\right) \equiv\left(p_{1} \wedge p_{2} \wedge p_{3}\right) \vee\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \vee\left(\neg p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \vee\left(\neg p_{1} \wedge \neg p_{2} \wedge p_{3}\right) \vee($ and therefore by De Morgan:
$f\left(p_{1}, p_{2}, p_{3}\right) \equiv\left(\neg p_{1} \vee \neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{3}\right) \wedge\left(p_{1} \vee \neg p_{2} \vee p_{3}\right) \wedge\left(p_{1} \vee p_{2} \vee \neg p_{3}\right) \wedge$ is the conjunctive normal form for $f\left(p_{1}, p_{2}, p_{3}\right)$
We have that $p \rightarrow q$ is not true in case that p is T and q is F. That is $\neg(p \rightarrow q) \equiv p \wedge \neg q$ therefore

$$
p \rightarrow q \equiv \neg p \vee q
$$

Of course this can be also verified using truth tables.

We say that negation, conjunction and disjunction are functionally complete because any propositional function is equivalent to one that contains only these logical operators.

