4. Sets and Functions

We are dealing here with what is called naive set theory. Here a set is any unordered collection of objects. If a is an element of the set A we write $a \in A$. Besides equality = the membership relation \in are the only relatioms used in set theory. We assume

Leibnitz Extensionality Axiom:

$$
A=B \text { iff } \forall x(x \in A \leftrightarrow x \in B)
$$

That is, two sets are equal if and only if they contain the same elements. Examples for sets are
$\mathbb{N}=\{0,1,2, \ldots\}$, the set of natural numbers
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ the set of integers
$\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\right\}$ the set of rational numbers
\mathbb{R} the set of real numbers
\mathbb{C} the set of complex numbers
The order of elements in a set does not matter. For example $\{1,2,3\}$ and $\{2,3,1\}$ denote the same set of the first three positive natural numbers.
The elements of a set may be themselves sets. $\{\mathbb{N}, \mathbb{Z}\}$ is a set with two elements, each of which is a set.
The empty set is the uniques set which does not have any element:

$$
\emptyset=\forall x(x \notin \emptyset)
$$

By extensionality, there is only one empty set.
We can define all natural numbers by starting with
$0=\emptyset$, then $1=\{\emptyset\}, 2=\{\emptyset,\{\emptyset\}\}=\{0,1\}, 3=\{0,1,2\}=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}$ in general, $n^{+}=\{0,1, \ldots, n\}$

In mathematics, every object should be a set. We just saw that this is true for natural numbers.
The set A is a subset of the set B if every element of A is an element of B for which we write $A \subseteq B$:

$$
A \subseteq B \text { iff } \forall x(x \in A \rightarrow x \in B)
$$

We have $\emptyset \subseteq A$ for every set A. In particular

$$
\emptyset \subseteq \emptyset
$$

while $\emptyset \in \emptyset$ is false. The empty set does not contain any element. We also note that $A \subseteq A$ for every set A.

For every set A, the power set $P(A)$ of A is the set of all subsets of A :

$$
P(A)=\{S \mid S \subseteq A\}
$$

For every set $A, \emptyset \in P(A)$ and $A \in P(A)$. The empty set is the smallest subset of A while A is the largest subset of A.

Theorem. If A is a finite set of n-many elements then $P(A)$ has 2^{n}-many elements. This is easy to see. If we add to A a new element, say ω, then the subsets of $A \cup\{\omega\}$ are the subsets S of A and the sets $S \cup\{\omega\}$ where ω has been added to subsets of A. That is adding a new element to A, doubles the number of subsets of A.

Given any element a the set $\{a\}$ which consists only of a is called a singleton. Given a and b then the set $\{a, b\}=\{b, a\}$ is called a doubleton. Note that the order of a and b in $\{a, b\}$ are irrelevant. What matters is that the only elements are a and b.
If we wish to list a and b in a specific order, say a first and then b, then we talk about the ordered pair (a, b). Formally,

$$
(a, b)=\{\{a\},\{a, b\}\}
$$

This is Kuratowski's definition of the ordered pair (a, b). The first component a of (a, b) is the only element of the singleton $\{a\}$ while the second component is the element in the doubleton $\{a, b\}$.

Given sets A and B then the Cartesian product of A and B is the set $A \times B$ of all ordered pairs (a, b) where $a \in A$ and $b \in B$

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

The number of elements of a finite set A is called the cardinality of A and Is denoted by $|A|$.
We have $|\emptyset|=|0|=0,|n|=n,|A \times B|=|A| \cdot|B|$.

Given sets A and B, the union $A \cup B$ of A and B is the set of all elements which belong to A or B (or both):

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

The intersection $A \cap B$ is the set of all elements which belong to both A and B :

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Assume that our sets X are subsets of a universal set $U: X \subseteq U$ Then the complement \bar{A} is the set of all elements of U that don't belong to A.
Union and Intersection can be generalized to more than two sets. Let S be any system of sets. Then:

$$
\cup S=\{x \mid x \in A \text { for some } A \in S\}, \cap S=\{x \mid x \in A \text { for all } A \in S
$$

We notice DeMorgan's laws for sets:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B} \text { and } \overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Given sets A and B a function f from A to B assigns to every element $a \in A$ a unique element $b \in B$ as image $f(a)$. Notation:

$$
f: A \rightarrow B, a \mapsto f(a) \in B
$$

If $f: A \rightarrow B, g: B \rightarrow C$ then we can form the composition $g \circ f: A \rightarrow C, a \mapsto g(f(a))$.
A function $f: A \rightarrow B$ is called one-one or injective, if $f\left(a_{1}\right)=f\left(a_{2}\right)$ only if $a_{1}=a_{2}$.
A function $f: A \rightarrow B$ is called onto or surjective if for every $b \in B$ there is some $a \in A$ such that $f(a)=b$.
A function $f: A \rightarrow B$ is called bijective if it is injective and surjective. Then for every $b \in B$ there is a unique $a \in A$ such that $f(a)=b$. For a bijective function we have an inverse $f^{-1}: B \rightarrow A$, such that $f^{-1}(f(a))=a, f\left(f^{-1}(b)\right)=b$.

For every function $f: A \rightarrow B$ we have a subset of $A \times B$ which is called the graph of f.

$$
\operatorname{graph}(f)=\{(a, f(a)) \mid a \in A\}
$$

Assume that for $f: A \rightarrow B$ one has a function $g: B \rightarrow A$ such that $g \circ f=i d_{A}$ where $i d_{A}=A \rightarrow A, a \mapsto a$ is the identity on A. Then f is injective and g is surjective. Assume $f\left(a_{1}\right)=f\left(a_{2}\right)$. Then $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$, therefore $a_{1}=a_{2}$. That is f is injective. Now let $a \in A$. Then $g(f(a))=a$ shows $g(b)=a$ for $b=f(a)$. That is, g is surjective.

A subset R of $A \times B$ is the graph of some function $f: A \rightarrow B$ if whenever $(a, b) \in R$ and $(a, c) \in R$ then $b=c$.

