Modular Arithmetic

Given integers a and b and a positive number m, we defined that $a \equiv b \bmod m$ in case that m divides $a-b$. That is a and b differ by a multiple of m. If we divide a by m with remainder, that is $a=q m+r, 0 \leq r<m$ then $a-r=q m$ which shows that $a \equiv r$ for a unique r where $0 \leq r<m$.
This shows that the set \mathbb{Z} of integers is divided into m-many classes according to $r=0, r=1, \cdots, r-m-1$. For example, there are three classes of integers modulo $m=3$:
$[0]_{3}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}=3 \mathbb{Z}$
$[1]_{3}=\{\ldots,-8,-5,-2,1,4,7,10, \ldots\}=3 \mathbb{Z}+1$
$[2]_{3}=\{\ldots,-7,-4,-1,2,5,8,11, \ldots\}=3 \mathbb{Z}+2$
The following allows us to add and multiply classes of congruent integers:

$$
[a]_{m}+[b]_{m}=[a+b]_{m},[a]_{m} \cdot[b]_{m}=[a \cdot b]_{m},
$$

Because we use representatives for these operations, one needs to show that the choice of representatives doesn't matter. If $[a]_{m}=\left[a^{\prime}\right]_{m}$ and $[b]_{m}=\left[b^{\prime}\right]_{m}$ then $a-a^{\prime}=q m, b-b^{\prime}=q^{\prime} m$ therefore $(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=\left(q-q^{\prime}\right) m$. Thus $[a+b]_{m}=\left[a^{\prime}+b^{\prime}\right]_{m}$. We denote the set of m-many congruence classes as \mathbb{Z}_{m}. On \mathbb{Z}_{m} an addition and multiplication has been defined which makes \mathbb{Z}_{m} to a commutative ring with unit $e=[1]_{m}$. We list the basic arithmetical properties of \mathbb{Z}_{m} :
$[a]+([b]+[c])=([a]+[b])+[c],[a]+[b]=[b]+[a],[a]+[0]=[a],[a]+[-a]=[0] ;$
$[a] \cdot([b] \cdot[c])=([a] \cdot[b]) \cdot[c],[a] \cdot[b]=[b] \cdot[a],[a] \cdot[1]=[a]$
$[a] \cdot([b]+[c])=[a] \cdot[b]+[a] \cdot[c]$
We omitted the subscript n for the classes.
For example $[2]_{6} \cdot[3]_{6}=[2 \cdot 3]_{6}=[6]_{6}=[0]_{6}$ That shows that neither $[2]_{6}$ nor $[3]_{6}$ can have a multiplicative inverse. However $[5]_{6} \cdot[5]_{6}=[25]_{6}=[1]_{6}$ shows that $[5]_{6}$ has a multiplicative inverse in \mathbb{Z}_{6}.

Theorem. Assme that a and m are relatively prime. Then $[a]_{m}$ has a multiplicative inverse in \mathbb{Z}_{m}.

For the proof we use the fact that the $\operatorname{gcd}(a, m)=1$ and that for integers s and t we have that $s \cdot a+t \cdot m=1$. Hence $[s]_{m} \cdot[a]_{m}+[t]_{m} \cdot[m]_{m}=[1]_{m}$ This shows $[a]_{m}$ has a multiplicative inverse, namely $[s]_{m}$.

If $m=p$ is a prime then $1,2, \ldots, p-1$ are relatively prime to p. That is every congruence class different from [0] has a multiplicative inverse.

Theorem. \mathbb{Z}_{m} is a field if and only if m is a prime.
In \mathbb{Z}_{p} we can do linear algebra. For example solve $3 x+2=1$ modulo 5 . We get
$3 x=-1,3 x=4,[3]_{5}^{-1}=[2]_{5}, x=[2]_{5} \cdot[4]_{5}=[8]_{5}=[3]_{5}$. Check:
$3 \cdot 3+2=11=1$ modulo $5 \sqrt{ }$

