Let *V* and *W* be vector spaces over a field *F* A map $T : V \rightarrow W$ is called linear if $T(a.\alpha + b.\beta) = a.T(\alpha) + b.T(\beta)$

We can add linear maps and multiply by scalars:

$$T + S : V \to W, \alpha \mapsto T(\alpha) + S(\alpha), a. T : V \to W, \alpha \mapsto a. T(\alpha)$$

With these operations th linear maps from *V* to *W* form a vector space, denoted as L(V, W). If *V* has dimension *n* and *W* has dimension *m* then dim $L(V, W) = m \times n$. Linear maps can be identified with matrices. Let $\gamma = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a basis of *V* and $\sigma = \{\beta_1, \beta_2, \dots, \beta_m\}$ be a basis of *W* then let

$$T(\alpha_j) = \sum_{i=1}^m A_{ij}\beta_i$$

A is a matrix with *m* rows and *n* columns whose entries are the A_{ij} . A linear map is uniquely determined by it images on the basis:

If $\alpha = x_1\alpha_1 + x_2\alpha_2 + \cdots + x_n\alpha_n$ then $T(\alpha) = x_1T(\alpha_1) + x_2T(\alpha_2) + \cdots + x_nT(\alpha_n)$

If A = Mat(T) then

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1j} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2j} & \cdots & A_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{m1} & A_{m2} & \cdots & A_{mj} & \cdots & A_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ \cdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \cdots \\ y_m \end{pmatrix}$$

where the y_j are the components of $T(\alpha)$ with respect to the basis γ . Central for linear maps is the

Theorem. Two linear maps that agree on a basis are equal. Given a basis $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ of *V* and *n*-vectors $\{\beta_1, \beta_2, \dots, \beta_n\}$ in *W* then there is one and only one linear map $V \to W$ which extends $\alpha_i \mapsto \beta_1$.

Linear maps can be composed

 $T: V \to W, S: W \to R, S \circ T: U \to R, \alpha \mapsto S(T(\alpha))$

The composition of linear maps is linear. The matrix of the composition is the product of the matrices.

Give two vector vector spaces of the same dimensions, there is a one-one and onto (bijective) linear map between them. For example, the vectors space $P_n(\mathbb{R})$ of polynomials with real coefficients of degree less that or equal *n* is isomorphic to \mathbb{R}^{n+1} . A linear map is injective if its null-space (kernel) $N(T) = \{0\}$. The range, or image, is another subspace associated with *T*.

If $T: V \to W$ is a map between finite dimensional vector spaces then $\dim(\ker(T) + \dim(im(T))) = \dim(\operatorname{dim}(T))$ The proof starts with any basis of $\ker(T)$, say $\alpha_1, \dots, \alpha_k$. Then let β_1, \dots, β_l be a basis of *im*(*T*). Let $\alpha_{k+1}, \dots, \alpha_{k+l}$ be counter images of the β_j . That is $T(\alpha_{k+1}) = \beta_1, \dots, T(\alpha_{k+l}) = \beta_l$. We claim that $\alpha_1, \dots, \alpha_k, \alpha_{k+1}, \dots, \alpha_{k+l}$ is a basis of *V*. Indeed, these are linearly independent vectors. Assume that $c_1\alpha_1 + \dots + c_k\alpha_k + c_{k+1}\alpha_{k+1} + \dots + c_l\alpha_l = 0$. We apply *T* on both sides and get $c_{k+1}T(\alpha_{k+1}) + \dots + c_lT(\alpha_l) = 0, c_{k+1}\beta_1 + \dots + c_l\beta_l = 0$ Thus $c_{k+1} = \dots = c_l = 0$ because the $\beta's$ are linearly independent. therefore $c_1\alpha_1 + \dots + c_k\alpha = 0$ and thus $c_1 = \dots = c_k = 0$ because $\alpha_1, \dots, \alpha_k$ are linearly independent. No let α be any vector in *V*. Then $T(\alpha) = c_1\beta_1 + \dots + c_l\beta_l$ because $T(\alpha) \in im(T)$. We look at $\alpha' = c_1\alpha_{k+1} + \dots + c_l\alpha_{k+l}$. Then $T(\alpha') = T(\alpha)$. This shows $T(\alpha - \alpha') = 0$ or $\alpha - \alpha' \in ker(T)$. Therefore, $\alpha - \alpha' = d_1\alpha_1 + \dots + d_k\alpha_k$, and we get $\alpha = d_1\alpha_1 + \dots + d_k\alpha_k + c_1\alpha_{k+1} + \dots + c_l\alpha_{k+l}$.

A most surprising consequence is that a linear map on a finite dimensional space is injective if and only if it is surjective.