Let V and W be vector spaces over a field F A map $T: V \rightarrow W$ is called linear if

$$
T(a . \alpha+b . \beta)=a . T(\alpha)+b . T(\beta)
$$

We can add linear maps and multiply by scalars:

$$
T+S: V \rightarrow W, \alpha \mapsto T(\alpha)+S(\alpha), a . T: V \rightarrow W, \alpha \mapsto a . T(\alpha)
$$

With these operations th linear maps from V to W form a vector space, denoted as $L(V, W)$. If V has dimension n and W has dimension m then $\operatorname{dim} L(V, W)=m \times n$.
Linear maps can be identified with matrices. Let $\gamma=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ be a basis of V and $\sigma=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right\}$ be a basis of W then let

$$
T\left(\alpha_{j}\right)=\sum_{i=1}^{m} A_{i j} \beta_{i}
$$

A is a matrix with m rows and n columns whose entries are the $A_{i j}$.
A linear map is uniquely determined by it images on the basis:

$$
\text { If } \alpha=x_{1} \alpha_{1}+x_{2} \alpha_{2}+\cdots+x_{n} \alpha_{n} \text { then } T(\alpha)=x_{1} T\left(\alpha_{1}\right)+x_{2} T\left(\alpha_{2}\right)+\cdots+x_{n} T\left(\alpha_{n}\right)
$$

If $A=\operatorname{Mat}(T)$ then

$$
\left(\begin{array}{cccccc}
A_{11} & A_{12} & \cdots & A_{1 j} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 j} & \cdots & A_{2 n} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m j} & \cdots & A_{m n}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
\cdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
\cdots \\
y_{m}
\end{array}\right)
$$

where the y_{j} are the components of $T(\alpha)$ with respect to the basis γ.
Central for linear maps is the
Theorem. Two linear maps that agree on a basis are equal. Given a basis $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ of V and n-vectors $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$ in W then there is one and only one linear map $V \rightarrow W$ which extends $\alpha_{i} \mapsto \beta_{1}$.

Linear maps can be composed

$$
T: V \rightarrow W, S: W \rightarrow R, S \circ T: U \rightarrow R, \alpha \mapsto S(T(\alpha)
$$

The composition of linear maps is linear. The matrix of the composition is the product of the matrices.
Give two vector vector spaces of the same dimensions, there is a one-one and onto (bijective) linear map between them. For example, the vectors space $P_{n}(\mathbb{R})$ of polynomials with real coefficients of degree less that or equal n is isomorphic to \mathbb{R}^{n+1}. A linear map is injective if its null-space (kernel) $N(T)=\{0\}$. The range, or image, is another subspace associated with T.

If $T: V \rightarrow W$ is a map between finite dimensional vector spaces then $\operatorname{dim}(\operatorname{ker}(T)+\operatorname{dim}(\operatorname{im}(T))=\mathrm{d}$ The proof starts with any basis of $\operatorname{ker}(T)$, say $\alpha_{1}, \cdots, \alpha_{k}$. Then let $\beta_{1}, \cdots \beta_{l}$ be a basis of
$\operatorname{im}(T)$. Let $\alpha_{k+1}, \cdots \alpha_{k+l}$ be counter images of the β_{j}. That is $T\left(\alpha_{k+1}\right)=\beta_{1}, \cdots, T\left(\alpha_{k+l}\right)=\beta_{l}$. We claim that $\alpha_{1}, \cdots, \alpha_{k}, \alpha_{k+1}, \cdots \alpha_{k+l}$ is a basis of V. Indeed, these are linearly independent vectors. Assume that $c_{1} \alpha_{1}+\cdots+c_{k} \alpha_{k}+c_{k+1} \alpha_{k+1}+\cdots+c_{l} \alpha_{l}=0$. We apply T on both sides and get $c_{k+1} T\left(\alpha_{k+1}\right)+\cdots+c_{l} T\left(\alpha_{l}\right)=0, c_{\kappa+1} \beta_{1}+\cdots+c_{l} \beta_{l}=0$ Thus $c_{k+1}=\cdots=c_{l}=0$ because the $\beta^{\prime} s$ are linearly independent. therefore $c_{1} \alpha_{1}+\cdots+c_{k} \alpha=0$ and thus $c_{1}=\cdots=c_{k}=0$ because $\alpha_{1}, \cdots, \alpha_{k}$ are linearly independent.
No let α be any vector in V. Then $T(\alpha)=c_{1} \beta_{1}+\cdots+c_{l} \beta_{l}$ because $T(\alpha) \in \operatorname{im}(T)$. We look at $\alpha^{\prime}=c_{1} \alpha_{k+1}+\cdots+c_{l} \alpha_{k+l}$. Then $T\left(\alpha^{\prime}\right)=T(\alpha)$. This shows $T\left(\alpha-\alpha^{\prime}\right)=0$ or $\alpha-\alpha^{\prime} \in \operatorname{ker}(T)$. Therefore, $\alpha-\alpha^{\prime}=d_{1} \alpha_{1}+\cdots+d_{k} \alpha_{k}$, and we get $\alpha=d_{1} \alpha_{1}+\cdots+d_{k} \alpha_{k}+c_{1} \alpha_{k+1}+\cdots+c_{l} \alpha_{k+l}$
This shows $k+l=n$ which is our claim.

A most surprising consequence is that a linear map on a finite dimensional space is injective if and only if it is surjective.

