
Relations
Equivalence relations
A relation between elements of a set A and a set B is a subset R of A  A. However,
instead of a,b ∈ R we write aRb. If f is a function from A to B then graphf 
a, fa|a ∈ A. We have that for any a ∈ A there is exactly one b ∈ B such that
a,b ∈ graphf.Namely b  fa. In general we have for a binary relation R many or
no b such that a,b ∈ R.
A typical example is A  students at your university B  courses offered. Then joe
smith,Math 3336 ∈ R in case that joe smith is enrolled in Math 3336.
A relation R ⊆ A  A is reflexive if a,a ∈ R for every a ∈ A.
Equality is reflexive: a  a. on every set A. Let ℤ be the set of integers and a|b be the
divisibility relation: a|b  ∃c∈ℤ a  c  b Divisibility on integers is reflexive. Similarly, ≤
on  is reflexive.
A relation R ⊆ A  A is symmetric If whenever a,b ∈ R then b,a ∈ R Of course,
equality on A is symmetric. The order relation ≤ is not symmetric. We can have a ≤ b
and b ≤ a only if a  b. Such a relation is called anti-symmetric : aRb ∧ bRa  a  b.
Divisibility on ℕ is also anti-symmetric.

A relation R ⊆ A  A is transitive if aRb and bRc yields aRc. Equality ,order ≤, and
divisibility | are transitive relations on ℕ.

A relation R ⊆ A  A is an equivalence relation on A if it is reflexive, symmetric and
transitive.
Let f : A  B be any function from A to B.Then

kerf  a,a′|fa  fa′

is an equivalence relation on A.
Let T : U  V be a linear map between vector spaces. Then

N  kerT  | ∈ U,T  0

Then T  T ′ iff T −  ′  0 iff  −  ′ ∈ N iff  ′ ∈   N
For any equivalence relation R on A we define the class of a as

aR  a′|aRa′

We note that the equivalence classes for R form a partition C of A.That is
a) No class is empty: a ∈ ar.
b) If the intersection of two classes is non-empty then the classes are the same:
c ∈ a ∩ a′ then a  a′
c) the union of all classes is A : a∈A aR  A

Let ℤ be the set of integers and m  0We defined a ≡ b if m|a − b, that is a − b ∈ mℤ.
We have a  q  m  r, 0 ≤ r  m. Thus a − r  q  m or a ≡ r :Every a ∈ ℤ is congruent
to some r where 0 ≤ r  m. There are finitely r −many classes.
We know that we can add and multiply classes representative wise.
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Partial orderings.
A relation R on A is called a partial ordering if it is reflexive, antisymmetric and
transitive. The ≤ relation on ℤ is a partial order. But so is divisibility |. ℤ.≤ and ℤ, |
denote the integers with partial ordering and divisibility, respectively.
Let A be any set. Then PA  B|B ⊆ A is partially ordered: Subsets B of a set A are
partially ordered. We write PA,⊆ is the notation of the powerset of A together with
the subset relation.
An element m1 of of a partially ordered set A,≤ is called the minimum of A if m1 ≤ a
for every a ∈ A. There can be at most one minimum for A,≤. The open interval 0,1
does not have a minimum while 0 is the minimum of 0,1. Every non-empty subset of
natural numbers has a minimum. This is the well-ordering principle for ℕ.
An element m2 is the maximum of A,≤ if a ≤ m2 for every a ∈ A.
The ∅ is the minimum of PA,⊆ and A is the maximum of PA,⊆.
An element a of A,≤ is minimal if there is no element b such that b  a. An element b
is maximal if there is no element a  b.

Theorem Let S,≤ be a finite partially ordered set. Then S has a minimal element.
Proof. Pick any element a1 from S. If a1 is minimal, then we are done. Otherwise, there
is some a2  a1. If a2 is minimal, we are done. Otherwise there is some a3  a2. If a3 is
minimal, we are done. Otherwise there is some a4  a3. If a4 is minimal, we are done.
Otherwise there is some a5  a4. This process of creating a sequence
a1  a2  a3 . . . . must end because we have only finitely many elements in S.

Singletons a are the minimal elements of PA\∅, that is the set of all non-empty
subsets of A. For any a ∈ A the set A\a is maximal.
For ℕ, |, the set of natural numbers together with divisibility, the prime numbers are
minimal for ℕ\1.
1 is the minimum of ℕ, | while 0 is the maximum.

Let B be a subset of A,≤. An element c is called an upper bound of B if b ≤ c for
every b ∈ B.An upper bound which belongs to B must be the maximum of B. The open
interval 0,1 has every number c ≧ 1 as an upper bound. If the set of upper bounds
has a minimum then there is a least upper bound.

Every set non-empty S of real numbers which has an upper bound has a least upper
bound. This is an axiom for real numbers.

A partially ordered set L,≤ is called a lattice any two element subset a,b has a
least upper bound, a ∨ b, and a largest lower bound a ∧ b. That is, if c ≥ a and c ≥ b
then c ≥ a ∨ b. Similarly, if d ≤ a and d ≤ b then d ≤ a ∧ b.

The set ℕ of natural numbers together with divisibility is a lattice
n ∧ m  gcdn,m  n,m,n ∨ m  lcmn,m  n,m
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Any finite partially ordered set can be totally ordered. This process is called
"topological sorting". Let A, be given where A is finite. We choose a minimal a0 of
A.This will be the minimum of A. Then choose a minimal element a1 of A\ao and set
a0 ≤ a1.Actually, we may assume that A\ao has been totally ordered
a1 ≤ a2 ≤. . . .≤ an such that if ai  aj then ai ≤ aj.
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