Relations

Equivalence relations

A relation between elements of a set A and a set B is a subset R of $A \times A$. However, instead of $(a, b) \in R$ we write $a R b$. If f is a function from A to B then $\operatorname{graph}(f)=$ $\{(a, f(a)) \mid a \in A\}$. We have that for any $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in \operatorname{graph}(f)$. Namely $b=f(a)$. In general we have for a binary relation R many or no b such that $(a, b) \in R$.
A typical example is $A=$ students at your university $B=$ courses offered. Then (joe smith, Math 3336) $\in R$ in case that joe smith is enrolled in Math 3336.
A relation $R \subseteq A \times A$ is reflexive if $(a, a) \in R$ for every $a \in A$.
Equality is reflexive: $a=a$. on every set A. Let \mathbb{Z} be the set of integers and $a \mid b$ be the divisibility relation: $a \mid b \Leftrightarrow \exists_{c \in \mathbb{Z}} a \cdot c=b$ Divisibility on integers is reflexive. Similarly, \leq on \mathbb{R} is reflexive.
A relation $R \subseteq A \times A$ is symmetric If whenever $(a, b) \in R$ then $(b, a) \in R$ Of course, equality on A is symmetric. The order relation \leq is not symmetric. We can have $a \leq b$ and $b \leq a$ only if $a=b$. Such a relation is called anti-symmetric : $a R b \wedge b R a \rightarrow a=b$. Divisibility on \mathbb{N} is also anti-symmetric.

A relation $R \subseteq A \times A$ is transitive if $a R b$ and $b R c$ yields $a R c$. Equality $=$, order \leq, and divisibility \mid are transitive relations on \mathbb{N}.

A relation $R \subseteq A \times A$ is an equivalence relation on A if it is reflexive, symmetric and transitive.
Let $f: A \rightarrow B$ be any function from A to B. Then

$$
\left.\operatorname{ker}(f)=\left\{\left(a, a^{\prime}\right) \mid f a\right)=f\left(a^{\prime}\right)\right\}
$$

is an equivalence relation on A.
Let $T: U \rightarrow V$ be a linear map between vector spaces. Then

$$
N=\operatorname{ker} T=\{\alpha \mid \alpha \in U, T(\alpha)=0\}
$$

Then $T(\alpha)=T\left(\alpha^{\prime}\right)$ iff $T\left(\alpha-\alpha^{\prime}\right)=0 \quad$ iff $\alpha-\alpha^{\prime} \in N \quad$ iff $\alpha^{\prime} \in \alpha+N$
For any equivalence relation R on A we define the class of a as

$$
[a]_{R}=\left\{a^{\prime} \mid a R a^{\prime}\right\}
$$

We note that the equivalence classes for R form a partition C of A. That is
a) No class is empty: $a \in[a]_{r}$.
b) If the intersection of two classes is non-empty then the classes are the same:
$c \in[a] \cap\left[a^{\prime}\right]$ then $[a]=\left[a^{\prime}\right]$
c) the union of all classes is $A: \cup_{a \in A}[a]_{R}=A$

Let \mathbb{Z} be the set of integers and $m>0$ We defined $a \equiv b$ if $m \mid a-b$, that is $a-b \in m \mathbb{Z}$. We have $a=q \cdot m+r, 0 \leq r<m$. Thus $a-r=q \cdot m$ or $a \equiv r$:Every $a \in \mathbb{Z}$ is congruent to some r where $0 \leq r<m$. There are finitely r-many classes.
We know that we can add and multiply classes representative wise.

Partial orderings.

A relation R on A is called a partial ordering if it is reflexive, antisymmetric and transitive. The \leq relation on \mathbb{Z} is a partial order. But so is divisibility $\mid .(\mathbb{Z} . \leq)$ and (\mathbb{Z}, \mid) denote the integers with partial ordering and divisibility, respectively.
Let A be any set. Then $P(A)=\{B \mid B \subseteq A\}$ is partially ordered: Subsets B of a set A are partially ordered. We write $(P(A), \subseteq)$ is the notation of the powerset of A together with the subset relation.
An element m_{1} of of a partially ordered set (A, \leq) is called the minimum of A if $m_{1} \leq a$ for every $a \in A$. There can be at most one minimum for (A, \leq). The open interval $(0,1)$ does not have a minimum while 0 is the minimum of $[0,1)$. Every non-empty subset of natural numbers has a minimum. This is the well-ordering principle for \mathbb{N}.
An element m_{2} is the maximum of (A, \leq) if $a \leq m_{2}$ for every $a \in A$.
The \emptyset is the minimum of $(P(A), \subseteq)$ and A is the maximum of $(P(A), \subseteq)$.
An element a of (A, \leq) is minimal if there is no element b such that $b<a$. An element b is maximal if there is no element $a>b$.

Theorem Let (S, \leq) be a finite partially ordered set. Then S has a minimal element. Proof. Pick any element a_{1} from S. If a_{1} is minimal, then we are done. Otherwise, there is some $a_{2}<a_{1}$. If a_{2} is minimal, we are done. Otherwise there is some $a_{3}<a_{2}$. If a_{3} is minimal, we are done. Otherwise there is some $a_{4}<a_{3}$. If a_{4} is minimal, we are done. Otherwise there is some $a_{5}<a_{4}$. This process of creating a sequence $a_{1}>a_{2}>a_{3}>\ldots$. must end because we have only finitely many elements in S.

Singletons $\{a\}$ are the minimal elements of $P(A) \backslash \emptyset$, that is the set of all non-empty subsets of A. For any $a \in A$ the set $A \backslash\{a\}$ is maximal.
For (\mathbb{N}, \mid), the set of natural numbers together with divisibility, the prime numbers are minimal for $\mathbb{N} \backslash\{1\}$.
1 is the minimum of (\mathbb{N}, \mid) while 0 is the maximum.

Let B be a subset of (A, \leq). An element c is called an upper bound of B if $b \leq c$ for every $b \in B$. An upper bound which belongs to B must be the maximum of B. The open interval $(0,1)$ has every number $c \geqq 1$ as an upper bound. If the set of upper bounds has a minimum then there is a least upper bound.

Every set non-empty S of real numbers which has an upper bound has a least upper bound. This is an axiom for real numbers.

A partially ordered set (L, \leq) is called a lattice any two element subset $\{a, b\}$ has a least upper bound, $a \vee b$, and a largest lower bound $a \wedge b$. That is, if $c \geq a$ and $c \geq b$ then $c \geq a \vee b$. Similarly, if $d \leq a$ and $d \leq b$ then $d \leq a \wedge b$.

The set \mathbb{N} of natural numbers together with divisibility is a lattice

$$
n \wedge m=\operatorname{gcd}(n, m)=(n, m), n \vee m=\operatorname{lcm}(n, m)=[n, m]
$$

Any finite partially ordered set can be totally ordered. This process is called "topological sorting". Let (A, \preceq) be given where A is finite. We choose a minimal a_{0} of A. This will be the minimum of A. Then choose a minimal element a_{1} of $A \backslash\left\{a_{o}\right\}$ and set $a_{0} \leq a_{1}$. Actually, we may assume that $A \backslash\left\{a_{o}\right\}$ has been totally ordered
$a_{1} \leq a_{2} \leq \ldots \leq a_{n}$ such that if $a_{i} \leq a_{j}$ then $a_{i} \leq a_{j}$.

