
Relations
Equivalence relations
A relation between elements of a set A and a set B is a subset R of A  A. However,
instead of a,b ∈ R we write aRb. If f is a function from A to B then graphf 
a, fa|a ∈ A. We have that for any a ∈ A there is exactly one b ∈ B such that
a,b ∈ graphf.Namely b  fa. In general we have for a binary relation R many or
no b such that a,b ∈ R.
A typical example is A  students at your university B  courses offered. Then joe
smith,Math 3336 ∈ R in case that joe smith is enrolled in Math 3336.
A relation R ⊆ A  A is reflexive if a,a ∈ R for every a ∈ A.
Equality is reflexive: a  a. on every set A. Let ℤ be the set of integers and a|b be the
divisibility relation: a|b  ∃c∈ℤ a  c  b Divisibility on integers is reflexive. Similarly, ≤
on  is reflexive.
A relation R ⊆ A  A is symmetric If whenever a,b ∈ R then b,a ∈ R Of course,
equality on A is symmetric. The order relation ≤ is not symmetric. We can have a ≤ b
and b ≤ a only if a  b. Such a relation is called anti-symmetric : aRb ∧ bRa  a  b.
Divisibility on ℕ is also anti-symmetric.

A relation R ⊆ A  A is transitive if aRb and bRc yields aRc. Equality ,order ≤, and
divisibility | are transitive relations on ℕ.

A relation R ⊆ A  A is an equivalence relation on A if it is reflexive, symmetric and
transitive.
Let f : A  B be any function from A to B.Then

kerf  a,a′|fa  fa′

is an equivalence relation on A.
Let T : U  V be a linear map between vector spaces. Then

N  kerT  | ∈ U,T  0

Then T  T ′ iff T −  ′  0 iff  −  ′ ∈ N iff  ′ ∈   N
For any equivalence relation R on A we define the class of a as

aR  a′|aRa′

We note that the equivalence classes for R form a partition C of A.That is
a) No class is empty: a ∈ ar.
b) If the intersection of two classes is non-empty then the classes are the same:
c ∈ a ∩ a′ then a  a′
c) the union of all classes is A : a∈A aR  A

Let ℤ be the set of integers and m  0We defined a ≡ b if m|a − b, that is a − b ∈ mℤ.
We have a  q  m  r, 0 ≤ r  m. Thus a − r  q  m or a ≡ r :Every a ∈ ℤ is congruent
to some r where 0 ≤ r  m. There are finitely r −many classes.
We know that we can add and multiply classes representative wise.
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Partial orderings.
A relation R on A is called a partial ordering if it is reflexive, antisymmetric and
transitive. The ≤ relation on ℤ is a partial order. But so is divisibility |. ℤ.≤ and ℤ, |
denote the integers with partial ordering and divisibility, respectively.
Let A be any set. Then PA  B|B ⊆ A is partially ordered: Subsets B of a set A are
partially ordered. We write PA,⊆ is the notation of the powerset of A together with
the subset relation.
An element m1 of of a partially ordered set A,≤ is called the minimum of A if m1 ≤ a
for every a ∈ A. There can be at most one minimum for A,≤. The open interval 0,1
does not have a minimum while 0 is the minimum of 0,1. Every non-empty subset of
natural numbers has a minimum. This is the well-ordering principle for ℕ.
An element m2 is the maximum of A,≤ if a ≤ m2 for every a ∈ A.
The ∅ is the minimum of PA,⊆ and A is the maximum of PA,⊆.
An element a of A,≤ is minimal if there is no element b such that b  a. An element b
is maximal if there is no element a  b.

Theorem Let S,≤ be a finite partially ordered set. Then S has a minimal element.
Proof. Pick any element a1 from S. If a1 is minimal, then we are done. Otherwise, there
is some a2  a1. If a2 is minimal, we are done. Otherwise there is some a3  a2. If a3 is
minimal, we are done. Otherwise there is some a4  a3. If a4 is minimal, we are done.
Otherwise there is some a5  a4. This process of creating a sequence
a1  a2  a3 . . . . must end because we have only finitely many elements in S.

Singletons a are the minimal elements of PA\∅, that is the set of all non-empty
subsets of A. For any a ∈ A the set A\a is maximal.
For ℕ, |, the set of natural numbers together with divisibility, the prime numbers are
minimal for ℕ\1.
1 is the minimum of ℕ, | while 0 is the maximum.

Let B be a subset of A,≤. An element c is called an upper bound of B if b ≤ c for
every b ∈ B.An upper bound which belongs to B must be the maximum of B. The open
interval 0,1 has every number c ≧ 1 as an upper bound. If the set of upper bounds
has a minimum then there is a least upper bound.

Every set non-empty S of real numbers which has an upper bound has a least upper
bound. This is an axiom for real numbers.

A partially ordered set L,≤ is called a lattice any two element subset a,b has a
least upper bound, a ∨ b, and a largest lower bound a ∧ b. That is, if c ≥ a and c ≥ b
then c ≥ a ∨ b. Similarly, if d ≤ a and d ≤ b then d ≤ a ∧ b.

The set ℕ of natural numbers together with divisibility is a lattice
n ∧ m  gcdn,m  n,m,n ∨ m  lcmn,m  n,m
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Any finite partially ordered set can be totally ordered. This process is called
"topological sorting". Let A, be given where A is finite. We choose a minimal a0 of
A.This will be the minimum of A. Then choose a minimal element a1 of A\ao and set
a0 ≤ a1.Actually, we may assume that A\ao has been totally ordered
a1 ≤ a2 ≤. . . .≤ an such that if ai  aj then ai ≤ aj.
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