Relations

Equivalence relations

A relation between elements of a set *A* and a set *B* is a subset *R* of $A \times A$. However, instead of $(a,b) \in R$ we write aRb. If *f* is a function from *A* to *B* then $graph(f) = \{(a,f(a))|a \in A\}$. We have that for any $a \in A$ there is exactly one $b \in B$ such that $(a,b) \in graph(f)$. Namely b = f(a). In general we have for a binary relation *R* many or no *b* such that $(a,b) \in R$.

A typical example is A = students at your university B = courses offered. Then (*joe smith*, *Math* 3336) $\in R$ in case that *joe smith* is enrolled in *Math* 3336.

A relation $R \subseteq A \times A$ is *reflexive* if $(a, a) \in R$ for every $a \in A$.

Equality is reflexive: a = a. on every set A. Let \mathbb{Z} be the set of integers and a|b be the divisibility relation: $a|b \Leftrightarrow \exists_{c \in \mathbb{Z}} a \cdot c = b$ Divisibility on integers is reflexive. Similarly, \leq on \mathbb{R} is reflexive.

A relation $R \subseteq A \times A$ is symmetric *If* whenever $(a,b) \in R$ then $(b,a) \in R$ Of course, equality on *A* is symmetric. The order relation \leq is not symmetric. We can have $a \leq b$ and $b \leq a$ only if a = b. Such a relation is called *anti-symmetric* : $aRb \wedge bRa \rightarrow a = b$. Divisibility on \mathbb{N} is also anti-symmetric.

A relation $R \subseteq A \times A$ is *transitive* if *aRb* and *bRc* yields *aRc*. Equality =, order \leq , and divisibility | are transitive relations on \mathbb{N} .

A relation $R \subseteq A \times A$ is an *equivalence* relation on A if it is reflexive, symmetric and transitive.

Let $f : A \rightarrow B$ be any function from A to B. Then

$$\ker(f) = \{(a, a') | fa) = f(a')\}$$

is an equivalence relation on A.

Let $T: U \rightarrow V$ be a linear map between vector spaces. Then

$$N = \ker T = \{ \alpha | \alpha \in U, T(\alpha) = 0 \}$$

Then $T(\alpha) = T(\alpha')$ iff $T(\alpha - \alpha') = 0$ iff $\alpha - \alpha' \in N$ iff $\alpha' \in \alpha + N$ For any equivalence relation *R* on *A* we define the class of *a* as

$$[a]_R = \{a' | aRa'\}$$

We note that the equivalence classes for *R* form a partition *C* of *A*. That is a) No class is empty: $a \in [a]_r$.

b) If the intersection of two classes is non-empty then the classes are the same: $c \in [a] \cap [a']$ then [a] = [a']

c) the union of all classes is $A : \bigcup_{a \in A} [a]_R = A$

Let \mathbb{Z} be the set of integers and m > 0 We defined $a \equiv b$ if m|a - b, that is $a - b \in m\mathbb{Z}$. We have $a = q \cdot m + r, 0 \le r < m$. Thus $a - r = q \cdot m$ or $a \equiv r$: Every $a \in \mathbb{Z}$ is congruent to some r where $0 \le r < m$. There are finitely r-many classes.

We know that we can add and multiply classes representative wise.

Partial orderings.

A relation *R* on *A* is called a *partial ordering* if it is reflexive, antisymmetric and transitive. The \leq relation on \mathbb{Z} is a partial order. But so is divisibility $|.(\mathbb{Z}.\leq)$ and $(\mathbb{Z},|)$ denote the integers with partial ordering and divisibility, respectively.

Let *A* be any set. Then $P(A) = \{B|B \subseteq A\}$ is partially ordered: Subsets *B* of a set *A* are partially ordered. We write $(P(A),\subseteq)$ is the notation of the powerset of *A* together with the subset relation.

An element m_1 of of a partially ordered set (A, \leq) is called the *minimum* of A if $m_1 \leq a$ for every $a \in A$. There can be at most one minimum for (A, \leq) . The open interval (0, 1) does not have a minimum while 0 is the minimum of [0, 1). Every non-empty subset of natural numbers has a minimum. This is the well-ordering principle for \aleph .

An element m_2 is the *maximum* of (A, \leq) if $a \leq m_2$ for every $a \in A$.

The \emptyset is the minimum of $(P(A), \subseteq)$ and A is the maximum of $(P(A), \subseteq)$.

An element *a* of (A, \leq) is *minimal* if there is no element *b* such that b < a. An element *b* is maximal if there is no element a > b.

Theorem Let (S, \leq) be a finite partially ordered set. Then *S* has a minimal element. Proof. Pick any element a_1 from *S*. If a_1 is minimal, then we are done. Otherwise, there is some $a_2 < a_1$. If a_2 is minimal, we are done. Otherwise there is some $a_3 < a_2$. If a_3 is minimal, we are done. Otherwise there is some $a_4 < a_3$. If a_4 is minimal, we are done. Otherwise there is some $a_5 < a_4$. This process of creating a sequence $a_1 > a_2 > a_3 > \ldots$ must end because we have only finitely many elements in *S*.

Singletons $\{a\}$ are the minimal elements of $P(A)\setminus\emptyset$, that is the set of all non-empty subsets of *A*. For any $a \in A$ the set $A\setminus\{a\}$ is maximal.

For $(\mathbb{N}, |)$, the set of natural numbers together with divisibility, the prime numbers are minimal for $\mathbb{N}\setminus\{1\}$.

1 is the minimum of $(\mathbb{N}, |)$ while 0 is the maximum.

Let *B* be a subset of (A, \leq) . An element *c* is called an *upper bound* of *B* if $b \leq c$ for every $b \in B$. An upper bound which belongs to *B* must be the maximum of *B*. The open interval (0, 1) has every number $c \geq 1$ as an upper bound. If the set of upper bounds has a minimum then there is a *least upper bound*.

Every set non-empty S of real numbers which has an upper bound has a least upper bound. This is an axiom for real numbers.

A partially ordered set (L, \leq) is called a *lattice* any two element subset $\{a, b\}$ has a least upper bound, $a \lor b$, and a largest lower bound $a \land b$. That is, if $c \ge a$ and $c \ge b$ then $c \ge a \lor b$. Similarly, if $d \le a$ and $d \le b$ then $d \le a \land b$.

The set ℕ of natural numbers together with divisibility is a lattice

 $n \wedge m = \gcd(n,m) = (n,m), n \vee m = \operatorname{lcm}(n,m) = [n,m]$

Any finite partially ordered set can be totally ordered. This process is called "topological sorting". Let (A, \preceq) be given where A is finite. We choose a minimal a_0 of A. This will be the minimum of A. Then choose a minimal element a_1 of $A \setminus \{a_o\}$ and set $a_0 \leq a_1$. Actually, we may assume that $A \setminus \{a_o\}$ has been totally ordered $a_1 \leq a_2 \leq \ldots \leq a_n$ such that if $a_i \leq a_j$ then $a_i \leq a_j$.