Test 3, Math3336

October 29, 2019

You have the full class period to complete the test. You cannot use any books or notes. Every problem is worth 20 points.

- **1**. Mark as true or false. $n, m, k, l \in \mathbb{Z}$
 - (**a**) 1|*n* T
 - (**b**) *n*|0 **T**
 - (c) If $n|k \cdot l$ then n|k or n|l F
 - (d) If n|k and n|l then n|k+l T
- **2**. Let *a* be an integer and *d* be a positive integer. Define the *Division Algorithm*, that is, the division of *a* by *d* with quotient *q* and remainder *r*. Answer:
 - $a = qd + r, 0 \le r < d$
 - **a**. What is *r* if 100 is divided by 9? $100 = 11 \cdot 9 + 1, r = 1$
 - **b**. What is *r* if 1000 is divided by 9? $1000 = 111 \cdot 9 + 1, r = 1$
 - **c**. What is q and what is r if 1 is divided by 2? $1 = 0 \cdot 2 + 1$, q = 0, r = 1
 - **d**. What is q and what is r if n is divided by n-1? $n = 1 \cdot (n-1) + 1, q = 1, r = 1$
- **3**. Let *a* and *b* be integers and let *m* be a positive integer. Define that *a* is congruent to *b* modulo *m*. What are the elements congruent to 1 mod *m*? **Answer**: $a \equiv b \mod(m)$ iff m|a b; $1 \equiv a \mod m$ iff $a \in m\mathbb{Z} + 1$
- 4. Evaluate these quantities. Your answer should be a congruence class $[x]_9$ where $0 \le x < 9$.
 - **a**. $[7]_9 + [7]_9$ $[7]_9 + [7]_9 = [14]_9 = [5]_9$
 - **b**. $[7]_9 \cdot [7]_9$ $[7]_9 \cdot [7]_9 = [49]_9 = [4]_9$
- 5. Convert the decimal expansion of each of these integers to a binary and ternary expansion.

a.
$$66 = (0100001)_2$$
, $66 = (0112)_3$

- **b**. $86 = (0110101)_2$ $86 = (21001)_3$
- 6. Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
 - **a**. 2,9 $(2,9) = 1 = (-1) \cdot 4 + 1 \cdot 9$
 - **b**. 15,35 (15,35) = 5 = (-2) $\cdot 15 + 1 \cdot 35$
 - **c**. 62,63 (62,63) = 1 = $(-1) \cdot 62 + 1 \cdot 63$
 - **d**. 6,10 (6,10) = 2 = 2 6 1 10
- 7.
- a. Prove that mod *n* the class of n 1 has an inverse. Find[14]⁻¹₁₅. **Answer**: $(n - 1)(n - 1) = n^2 - 2n + 1 = 1 \mod n$, Thus $[n - 1]_n^{-1} = [n - 1]_n$. Thus $[14]_{15}^{-1} = [14]_{15}$
- **b**. Solve $4x + 3 = 1 \mod 5$ Answer: $[4]_5^{-1} = [4], 4x = -2 = 3 \mod 5, x = 12 = 2 \mod 5$
- 8. Let [n,m] denote the least common multiple of n and m, and (n,m) denote

the greatest common divisor. Prove that $[n,m] \cdot (n,m) = n \cdot m$ **Answer**: $n = p_1^{n_1} \cdot p_2^{n_2} \cdot \cdot \cdot p_k^{n_k}, m = p_1^{m_1} \cdot p_2^{m_2} \cdot \cdot \cdot p_k^{m_k}, s_i = \min(n_i, m_i), t_i = \max(n_i, m_i)$ then $(n,m) = p_1^{s_1} \cdot p_2^{s_2} \cdot \cdot \cdot p_k^{s_k}, [n,m] = p_1^{t_1} \cdot p_2^{t_2} \cdot \cdot \cdot p_k^{t_k}$ and obviously $[n,m] \cdot (n,m) = n \cdot m.$

- **9**. Prove that 8 cannot have a multiplicative inverse mod 12. **Answer**: $[6]_{12} \cdot [8]_{12} = [48]_{12} = [0]_{12}$ If $[8]_{12}$ had an inverse, then $[6]_{12} = [0]_{12}$
- **10**. Let m_1 and m_2 be relatively prime integers and that $b_1m_1 + b_2m_2 = 1$.
 - **a**. Prove that $b_1m_1 \equiv 1 \mod m_2$ and $b_2m_2 \equiv 1 \mod m_1$.
 - **b**. $x \equiv a_1 \mod m_1$ and $x \equiv a_2 \mod m_2$ has $x = a_1b_2m_2 + a_2b_1m_1$ as a solution.
 - **c**. Find some x such that $x \equiv 2 \mod 3$ and $x \equiv 3 \mod 7$. **Answer**: (3,7) = (1), 1 = (-2) \cdot 3 + 1 \cdot 7, x = 3 \cdot (-2) \cdot 3 + 2 \cdot 7 = -18 + 14 = -4 check: $-4 \equiv 2 \mod 3, -4 \equiv 3 \mod 7$