Test 3, Math3336
October 29, 2019
You have the full class period to complete the test. You cannot use any books or notes. Every problem is worth 20 points.

1. Mark as true or false. $n, m, k, l \in \mathbb{Z}$
(a) $1 \mid n \quad \mathrm{~T}$
(b) $n \mid 0 \quad \mathrm{~T}$
(c) If $n \mid k \cdot l$ then $n \mid k$ or $n \mid l \quad \mathrm{~F}$
(d) If $n \mid k$ and $n \mid l$ then $n \mid k+l \quad \mathrm{~T}$
2. Let a be an integer and d be a positive integer. Define the Division Algorithm, that is, the division of a by d with quotient q and remainder r. Answer:
$a=q d+r, 0 \leq r<d$
a. What is r if 100 is divided by 9 ? $\quad 100=11 \cdot 9+1, r=1$
b. What is r if 1000 is divided by 9 ? $\quad 1000=111 \cdot 9+1, r=1$
c. What is q and what is r if 1 is divided by

2 ? $\quad 1=0 \cdot 2+1, \quad q=0, r=1$
d. What is q and what is r if n is divided by

$$
n-1 ? \quad n=1 \cdot(n-1)+1, q=1, r=1
$$

3. Let a and b be integers and let m be a positive integer. Define that a is congruent to b modulo m. What are the elements congruent to 1 $\bmod m$? Answer: $a \equiv b \bmod (m)$ iff $m \mid a-b ; 1 \equiv a \bmod m$ iff $a \in m \mathbb{Z}+1$
4. Evaluate these quantities. Your answer should be a congruence class $[x]_{9}$ where $0 \leq x<9$.
a. $[7]_{9}+[7]_{9}$
$[7]_{9}+[7]_{9}=[14]_{9}=[5]_{9}$
b. $\quad[7]_{9} \cdot[7]_{9}$
$[7]_{9} \cdot[7]_{9}=[49]_{9}=[4]_{9}$
5. Convert the decimal expansion of each of these integers to a binary and ternary expansion.
$\begin{array}{lll}\text { a. } & 66=(0100001)_{2}, & 66=(0112)_{3} \\ \text { b. } & 86=(0110101)_{2} & 86=(21001)_{3}\end{array}$
6. Express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.
a. $2,9 \quad(2,9)=1=(-1) \cdot 4+1 \cdot 9$
b. $15,35 \quad(15,35)=5=(-2) \cdot 15+1 \cdot 35$
c. $62,63 \quad(62,63)=1=(-1) \cdot 62+1 \cdot 63$
d. $6,10 \quad(6,10)=2=2 \cdot 6-1 \cdot 10$
7.

a. Prove that $\bmod n$ the class of $n-1$ has an inverse.

Find $[14]_{15}^{-1}$. Answer: $(n-1)(n-1)=n^{2}-2 n+1=1 \bmod n$, Thus
$[n-1]_{n}^{-1}=[n-1]_{n}$.Thus $[14]_{15}^{-1}=[14]_{15}$
b. Solve $4 x+3=1 \bmod 5$ Answer:

$$
[4]_{5}^{-1}=[4], 4 x=-2=3 \bmod 5, x=12=2 \bmod 5
$$

8. Let $[n, m]$ denote the least common multiple of n and m, and (n, m) denote
the greatest common divisor. Prove that $[n, m] \cdot(n, m)=n \cdot m \quad$ Answer: $n=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}, m=p_{1}^{m_{1}} \cdot p_{2}^{m_{2}} \cdots p_{k}^{m_{k}}, s_{i}=\min \left(n_{i}, m_{i}\right), t_{i}=\max \left(n_{i}, m_{i}\right)$ then $(n, m)=p_{1}^{s_{1}} \cdot p_{2}^{s_{2}} \cdots p_{k}^{s_{k}},[n, m]=p_{1}^{t_{1}} \cdot p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$ and obviously $[n, m] \cdot(n, m)=n \cdot m$.
9. Prove that 8 cannot have a multiplicative inverse $\bmod 12$. Answer:
$[6]_{12} \cdot[8]_{12}=[48]_{12}=[0]_{12}$ If $[8]_{12}$ had an inverse, then $[6]_{12}=[0]_{12}$
10. Let m_{1} and m_{2} be relatively prime integers and that $b_{1} m_{1}+b_{2} m_{2}=1$.
a. Prove that $b_{1} m_{1} \equiv 1 \bmod m_{2}$ and $b_{2} m_{2} \equiv 1 \bmod m_{1}$.
b. $\quad x \equiv a_{1} \bmod m_{1}$ and $x \equiv a_{2} \bmod m_{2}$ has $x=a_{1} b_{2} m_{2}+a_{2} b_{1} m_{1}$ as a solution.
c. Find some x such that $x \equiv 2 \bmod 3$ and $x \equiv 3 \bmod 7$. Answer:
$(3,7)=(1), 1=(-2) \cdot 3+1 \cdot 7, x=3 \cdot(-2) \cdot 3+2 \cdot 7=-18+14=-4$ check: $-4 \equiv 2 \bmod 3,-4 \equiv 3 \bmod 7$
