You have 90 minutes to complete the test. You cannot use any books, calculators or phones.

1. What is the order of 2 in
a. \mathbb{Z}_{4} Solution $o(2)=2$
b. \mathbb{Z}_{5} Solution $o(2)=5$
c. \mathbb{Z}_{6} Solution $o(2)=3$
d. \mathbb{Z}_{7} Solution $o(2)=7$
2. Is $\mathbb{Z} \times \mathbb{Z}_{2}$ is cyclic? You must prove your answer. Solution: No! $(1,1)$ could be a generator but it is not: $(2,1) \notin<(1,1)>$
3. Define that
a. $f: A \rightarrow B$ is an injective function. .
b. $f: A \rightarrow B$ is a surjective function.
c. Can you find an in injective function $\mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$? If your answer is "Yes" then you must give an example. If your answer is "No" then you must provide a reason.
Solution:Yes, $f(n)=(n, n)$ is injective.
d. Can you find an injective function $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$? If your answer is "Yes" then you must provide an example. If your answer is "No" then you must provide a reason. Solution; Yes.
4. Prove that a subgroup of a cyclic group is cyclic. Solution: Let $G=<x\rangle$ and H be a subgroup of G. Then let k be the smallest positive number such that $x^{k} \in H$. Then assume $x^{n} \in H$. By the division algotithm, $n=q k+r$ where $0 \leq r<k$. We have that $x^{n}=x^{q k} x^{r}$, therefore $x^{-q k} x^{n}=x^{r}$ which shows $x^{r} \in H$ By the choice of k we get $r=0$. Thus $x^{n}=\left(x^{k}\right)^{q}$. More detailed in the book!
5. Find the right cosets of $<3>$, the cyclic group generated by 3 , for
a. \mathbb{Z}_{12}. Solution: $H=<3>$ has four elements $H=\{0,3,6,9\}$ and cosets are $H, H+1, H+2, H+3$
b. \mathbb{Z} Solution: $\langle 3\rangle=3 \mathbb{Z}$, cosets are $3 \mathbb{Z}+r, r=0,1,2$
6. Define that E is an equivalence relation on A.
a. For $a \in A$ define the equivalence class $[a]_{E}$.
b. Show that two different equivalence classes are disjoint.
7. Let $f: A \rightarrow B$ be any map. Prove that
a. $E_{f}=\left\{\left(a_{1}, a_{2}\right) \mid f\left(a_{1}\right)=f\left(a_{2}\right)\right\}$ is an equivalence relation on A.
b. For the map ${ }^{2}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$ describe the equivalence classes. Solution: $\{x,-x\}, x \in \mathbb{R}^{+}$
8. Let H be a subgroup of the group G. Define a binary relation \equiv on G by $x \equiv y$ iff $x^{-1} y \in H$. Solution: This is the decomposition into right cosets.
b. What is the equivlence class of e ? Prove that $[x]=x H=\{x h \mid h \in H\}$.
9. Let $\sigma=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 10 & 8 & 2 & 9 & 4 & 7 & 1 & 6\end{array}\right)$. Decompose σ into cycles and then transpositions. Is σ even or odd. Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
3 & 5 & 10 & 8 & 2 & 9 & 4 & 7 & 1 & 6
\end{array}\right)=(1,3,10,6,9)(2,5)(4,8,7)=(1,9)(1,6)(1,10)(1,3)(\\
& \text { odd }
\end{aligned}
$$

10. Let A_{n} be the set of all even permutations of S_{n}. Prove that A_{n} is a subgroup of S_{n}.Solution: The identity permutation is even, e.g., id=(1,2)(1,2); if σ_{1} and σ_{2} are both even then σ_{1} is a product of an even number of transpositions ans σ_{2} is an even number of transpositions and so is $\sigma_{1} \circ \sigma_{2}$; if $\sigma=\tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{k}, k$ even, then $\sigma^{-1}=\tau_{k} \circ \ldots \tau_{2} \circ \tau_{1}$ is also even. Notice $\tau=\tau^{-1}$ for transpositions.
