Math 5330 Abstract Algebra March 23, 2019 Test 2

You have 90 minutes to complete the test. You cannot use any books, calculators or phones.

- 1. What is the order of 2 in
- a. \mathbb{Z}_4 Solution o(2) = 2
- b. \mathbb{Z}_5 Solution o(2) = 5
- c. \mathbb{Z}_6 Solution o(2) = 3
- d. \mathbb{Z}_7 Solution o(2) = 7

2. Is $\mathbb{Z} \times \mathbb{Z}_2$ is cyclic? You must prove your answer. **Solution**: No! (1,1) could be a generator but it is not: (2,1) $\notin <$ (1,1) >

3. Define that

a. $f: A \rightarrow B$ is an injective function.

b. $f : A \rightarrow B$ is a surjective function.

c. Can you find an in injective function $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$? If your answer is "Yes" then you must give an example. If your answer is "No" then you must provide a reason. **Solution**:Yes, f(n) = (n, n) is injective.

d. Can you find an injective function $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$? If your answer is "Yes" then you must provide an example. If your answer is "No" then you must provide a reason. **Solution**; Yes.

4. Prove that a subgroup of a cyclic group is cyclic. **Solution**: Let $G = \langle x \rangle$ and H be a subgroup of G. Then let k be the smallest positive number such that $x^k \in H$. Then assume $x^n \in H$. By the division algorithm, n = qk + r where $0 \le r < k$. We have that $x^n = x^{qk}x^r$, therefore $x^{-qk}x^n = x^r$ which shows $x^r \in H$ By the choice of k we get r = 0. Thus $x^n = (x^k)^q$. More detailed in the book!

5. Find the right cosets of < 3 >, the cyclic group generated by 3, for

a. \mathbb{Z}_{12} . Solution: H = < 3 > has four elements $H = \{0, 3, 6, 9\}$ and cosets are H, H + 1, H + 2, H + 3

b. \mathbb{Z} Solution: < 3 >= 3 \mathbb{Z} , cosets are $3\mathbb{Z} + r, r = 0, 1, 2$

6. Define that *E* is an equivalence relation on *A*.

- a. For $a \in A$ define the equivalence class $[a]_{E.}$
- b. Show that two different equivalence classes are disjoint.
- 7. Let $f : A \rightarrow B$ be any map. Prove that

a. $E_f = \{(a_1, a_2) | f(a_1) = f(a_2)\}$ is an equivalence relation on A.

b. For the map 2 : $\mathbb{R} \to \mathbb{R}, x \mapsto x^2$ describe the equivalence classes. Solution: $\{x, -x\}, x \in \mathbb{R}^+$

8. Let *H* be a subgroup of the group *G*. Define a binary relation = on *G* by x = y iff $x^{-1}y \in H$. Solution: This is the decomposition into right cosets.

b. What is the equivlence class of *e*? Prove that $[x] = xH = \{xh|h \in H\}$.

9. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 10 & 8 & 2 & 9 & 4 & 7 & 1 & 6 \end{pmatrix}$. Decompose σ into cycles and then transpositions. Is σ even or odd. **Solution**: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 10 & 8 & 2 & 9 & 4 & 7 & 1 & 6 \end{pmatrix} = (1,3,10,6,9)(2,5)(4,8,7) = (1,9)(1,6)(1,10)(1,3)(1,3))(1,3)(1,3))$

10. Let A_n be the set of all even permutations of S_n . Prove that A_n is a subgroup of S_n . Solution: The identity permutation is even, e.g., id=(1,2)(1,2); if σ_1 and σ_2 are both even then σ_1 is a product of an even number of transpositions and σ_2 is an even number of transpositions and so is $\sigma_1 \circ \sigma_2$; if $\sigma = \tau_1 \circ \tau_2 \circ \ldots \circ \tau_k$, *k* even, then $\sigma^{-1} = \tau_k \circ \ldots \tau_2 \circ \tau_1$ is also even. Notice $\tau = \tau^{-1}$ for transpositions.