This is a take home test. I assume that you adhere to the Academic Honors code and work alone. You can use the text book but not your computer for answers. Mail your answers back to

klaus@math.uh.edu

- 1. Prove that a subgroup of a cyclic group is cyclic.
- 2. What are the subgrups of \mathbb{Z} with addition?
- 3. Prove that if $G = \langle x \rangle$ then $G = \langle x^{-1} \rangle$
- 4. Prove that if G=<x> and and G is infinite then x and x^{-1} are the only generators of G.
- 5. Show that it is impossible for a group G to be the union of two proper subgroups.
- 6. Let G be a group and let $g \in G$. Show that $Z(g) = \{x \mid xg = gx\}$ is a subgroup of G.

7. Let G be a group and let $a \in G$ Define a function $f:G \rightarrow G$ by $f(x)=axa^{-1}$.. Prove that f is bijective (one-one and onto)

8. Let X be a set .and let $Y \subseteq X$. Show that the subset of all permutations of X consisting of all f such that f(y)=y for all $y \in Y$ forms a subgoup.

9. Is the group Q of rational numbers cyclic?

10. Show that the intersection of two subgroups of a group G is itself a subgroup of G..