1. Let R be the relation of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if $ad=bc$. Show that R is an equivalence relation.

2. What is the congruence class $[4]_m$ when m is
 a) 2? b) 3?

3. Determine the number of different equivalence relations on a set with three elements by listing them.

4. Draw the Hasse diagram for divisibility on the set $\{1,2,3,4,5,6,7,8\}$ and of $\{1,2,3,6,12,24,36,48\}$.

5. Which of these are posets?
 a) $(R,=)$ b) $(R,<)$ c) (R,\leq) d) (R,\neq)

6. Which of these pairs of elements are comparable in the poset $(\mathbb{Z}^{\{\pm\}},|)$?
 a) 5, 15 b) 6, 9 c) 8, 16 d) 7, 7

7. Show that $\{(x,y)|x-y \in \mathbb{Q}\}$ is an equivalence relation on the set of real numbers, where \mathbb{Q} denotes the set of rational numbers. What are $[1],[1/2]$?

8. Find the smallest equivalence which contains the relation $\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,2),(3,4),(4,1)\}$.

9. Find two incomparable elements in these posets.
 a) $(P(\{0,1,2\}),\subseteq)$ b) $(\{1,2,4,6,8\},\mid)$

10. Show that there is exactly one greatest element of a poset, if such an element exists.