Homework 2 Math 6302

- 1. Let A be any set. We assume that all of its elements a are sets. Show that the set $R(A) = \{a | a \in A, a \notin a\}$ is not an element of A.
- 2. For any set A, let B be the set of all second coordinates of ordered pairs that belong to A. Then let $C = \{(a, R(B)) | a \in A\}$. Show that $A \cap C = \emptyset$. Hence, for any set A there is a set C that is disjoint and equipotent to A.
- 3. An injective φ map from the partially ordered set (P, \leq) to the partially ordered set (Q, \leq) is called an order embedding if $\varphi(x) \leq \varphi(y)$ iff $x \leq y$. A bijective order embedding is an order isomorphism. That is, φ^{-1} is monotone. Prove: Any ordered set can be embedded into an ordered set that has a minimum and a maximum.
- 4. Any partial order on a finite set can be extended to a total order. This "process" is called topological sorting.
- 5. Assume that every subset of the partially ordered set (L, \leq) has an infimum. Prove that every subset has a supremum.
- 6. A reflexive and transitive relation R on a set S is called a *quasi-order*. Show that

$$a \sim_R b \Leftrightarrow a \ R \ b \text{ and } b \ R \ a$$

is an equivalence relation on S. On S/\sim_R a partial order \leq_R can be defined

 $[s] \leq [t]$ iff sRt

 (S, \leq_R) is called the *contraction* of the quasiorder R.

7. Let $f: (S, R) \to (S/\sim_R, \leqslant)$, $s \mapsto [s]$, be the contraction-map of the quasi-order (S, R). Then f is increasing , i.e., $s_1Rs_2 \Rightarrow [s_1] \leqslant [s_2]$, and any increasing map $h: (S, R) \to (T, \leqslant)$ from (S, R) into an ordered set (T, \leqslant) factors over f, i.e., $h = g \circ f$ for a **uniquely determined** increasing map $g: (S/\sim_R, \leqslant) \to (T, \leqslant)$. One says, $f: (S, R) \to (S/\sim_R, \leqslant)$ is universal for all increasing maps $h: (S, R) \to (T, \leqslant)$. Show: If $f': (S, R) \to (C, \leqslant)$ is also universal for all increasing maps from (S, R) into ordered sets (T, \leqslant) , then one has that $(S/_R, \leqslant) \cong (C, \leqslant)$.