Homework 1 Math 6303

- 1. Let p(x) be an irreducible polynomial in $\mathbb{F}[x]$ where \mathbb{F} is a field.
 - (a) Show that $\mathbb{F} \to \mathbb{F}[x]/(p(x)), a \mapsto [a]$ is an injective homomorphism (embedding) between fields. Thus, we can think of $\mathbb{F}[x]/(p(x))$ as an extension \mathbb{K} of \mathbb{F} .
 - (b) Show that p(x) has a root in \mathbb{K} .
 - (c) Show that for every polynomial p(x) of degree n with coefficients of a field \mathbb{F} admits a field extension \mathbb{K} where p(x) has n roots.
- 2. Explain why $\mathbb{R}[x]/(x^2+1)$ is isomorphic to the complex numbers.
- 3. Let the field \mathbb{E} be an extension of the field \mathbb{F} . Then \mathbb{E} can be perceived as a vector space over \mathbb{F} . The dimension of \mathbb{E} over \mathbb{F} is called the $degree[\mathbb{E} : \mathbb{F}]$ of the extension $\mathbb{E}|\mathbb{F}$. An extension \mathbb{E} over \mathbb{F} is called *finite* if the degree $[\mathbb{E} : \mathbb{F}]$ is finite. An element α of \mathbb{E} is called *algebraic* if it is a root of a polynomial in $\mathbb{F}[x]$. Otherwise it is called *transcendental*.

Let M be a subset of \mathbb{E} . Then $\mathbb{F}(M)$ denotes the smallest subfield of \mathbb{E} which contains M and \mathbb{F} .

An extension \mathbb{E} of \mathbb{F} is simple if $\mathbb{E} = \mathbb{F}(\alpha)$

- (a) Any α in \mathbb{E} gives rise to a homomorphism $\mathbb{F}[x] \to \mathbb{E}$, $f(x) \mapsto f(\alpha)$. If α is algebraic then one has that $\mathbb{F}(\alpha) \cong \mathbb{F}[x]/(p(x))$ where p(x) is a uniquely determined monic irreducible polynomial. The degree of p(x) is the degree of the extension. If α is transcendental then $\mathbb{F}(\alpha) \cong \mathbb{F}[x]$
- (b) Let $\mathbb{E} = \mathbb{F}(\alpha)$ where α is algebraic. Then for every element β there is a polynomial r(x) of degree less than n where n is the degree of \mathbb{E} over \mathbb{F} such that $\beta = r(\alpha)$.
- (c) Assume that \mathbb{K} over \mathbb{E} and \mathbb{E} over \mathbb{F} are finite. Then \mathbb{K} over \mathbb{F} is finite and one has the *degree rule*:

$$[\mathbb{K}:\mathbb{F}]=[\mathbb{K}:\mathbb{E}]\cdot[\mathbb{E}:\mathbb{F}]$$

(d) Prove that the algebraic elements of \mathbb{E} over \mathbb{F} form a subfield of \mathbb{E} which contains \mathbb{F} .