ADVANCED LINEAR ALGEBRA

MATH 4378

These Notes are meant as a supplement of the required Text Linear Algebra by
K. Hoffman and R. Kunze. The first seven section cover the geometric/algebraic theory
of the structure of one linear map; section eight deals with the computational aspect of

the theory. In section nine we present an elementary proof of the spectral theorem for
symmetric maps on Euclidean spaces.




THE STRUCTURE OF ONE LINEAR MAP

1. The Minimal Polynomial. Let V be & vector space over the field F and let
T: Y —> V_be linear. We assume that V is of finite dimension, dim(V)=n. Let

o € ¥ where o # 0. Then

o Ty Ty THO)

are n+l-many vectors in V, so they must be linearly dependent. Hence, there
is some k, 0< k < n, such that

& T{at)seeeey T*!(«) are linearly independent
while T™"(«) is a unique linear combination of o, T(cx); «ees T w):

T () = -a,0 — alT(q) T ak_lTk'l(o:)

That is: ag + 8, T(a) + .00 + a,_,T(x) + () = O.
Let: PglX) = 8, + ax +a,_ x' + x*
Then: Pe(THa) = 0

Pylx) is called the minimal polynomial of T for the vector a € V.

For the zero vector o« = 0 one has that T () = idv(o:) = 0. Hence w:e may
define for the zero vector, p,(x) = 1. If T= 0 then py(x) = x for every
x#0. If T=id, is the identity map on V, then pg(x) = 1-x for every
o # 0. . '

Assume one has for a polynomial p(x) = b, + b, X .... +bm_1x""1 +x" , m20,

that p(T)(x) = 0. Such a polynomial is called a non-trivial anhihi]ating
polynomial for «. Then: '

Tm(a) = —boa - blT(O:) = esee T bm_le-l((x)
Thus: o T{a)y eeeey T™ax) are linearly dependent

Because o, T(ax)y ceesy T («) are lineérly independent we must have m 2 k

for any non-trivial annihilating polynomial.

If p(x) is any non-trivial annihilating polynomial then -

deg(p(x)) = deg(py(x)).



ey

Assume that p(x) is annihilating for o« We divide p(x) by pglx) with
remainder: .

p(x) = Q(X)Py(x) + r(x), deg(r(x)) < deg(pg(x)) or r(x) =0

We then have

P(T) = q(T)*be(T) # £(T), and, in particular;
P(T) () = ATHPAT) () +r(T){a) = 0

because p(x) is annihilating for «. But also pu(T)Hax) = 0, s0 r(T)(oz) =0
Hence, r(x) is also annihilating for a. This is possible only if r(x) = 0.
Hence: Every annihilating po]y‘nomJaJ for o« is divisible by the minimal
polynomial for «. Recall the following fact about polynomials: If pl(x) and
P, (x) divide each other then p, (x) ~ p,(x), i.e., p, (x) and pz(x) are. either
both zero or p,(x) = cp, (x) with a unique c € F where ¢ # 0. In particular,

two monic polynomials p, (x) and pz(x) which divide each other are equal.

Proposition 1. The minimal polynom1a1 of the vector « for the linear map T
on the finite dimensional vector space V is the unique polynomial pa(x) with
the following propertles.

(a) pgl(x) is annihilating, iesy Pu(T){x) = 0.

(b) If p(x) is annihilating then pa(x)lp(x).

(€) Pqlx) is monic, i.e., the highest coefficient of p,(x) is one. O

Now let o, ,...,. be any base for V and let py (X),...,py (X) be the minimal
1 n ‘ G o,

polynomials for o jy...,a, , respectively. Then define:

| p‘v(x) = l.c.m.(pal(x),...,pan(x))
That is, pav(x)lpv(x) for v= 1,...,1jl , and if pau(x)lp(x) holds for
v =1,...,n , then pw(x)lp(x). ' :

Proposition 2. The minimal polynomial p,_y(x) for the linear map T on the
finite dimensional vector space V is the unique polynomial with the
following properties. | o

(a) pv(x) annihilates V, i.e., pV(T)(oc) = 0 for every v € V.

(b) If p(x) is annihilating V then p‘v(x)lp(x)

(c) pv(x) is monic.
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‘Proof. Let a = a a, +a,qa, too ta @ . Then:
Py(TH (@) = 8Dy (T)ay) + oo + a,py(T)(a;)

But pw(x) = qu(x)pa‘)(x) and therefore pv(T)(O(,)) =0 for v = 1,..,n. This

proves (a). Now, if p(T)(x) = 0 holds for every «x €V, then , in particular,

—P{T)Hexp)-=-0.- - Hence, . P (x).Ip(x)...for v = 1,..,mn. But _,_,.ngnwpv(x) Ip(x)

because pw(x) is the lowest common multiple of the pav(x). This proves (b).O

Thus P‘v(x) is independent of the chosen basis o, s.esa,. It is the unique
annihilating polynomial which divides any other annihilating polynomial and

which has highest coefficient one. Note:

If « has minimal polynomial p.(x) then py(x) Ipv(x).

Recall that the ring F[x] of polynomials over a field F is a principal ideal
domain. That is, any ideal I of F[x] is principal, I = {q(x)p(x)lq(x)eF[x]}.
The generator p{x) is either zero or can be chosen as a unigue monic
polynomial in I 3 '

If V is any vector space over F aﬁd T any linear map on V, then for any

subset S of V
I={px)Ip(T)x)=0 foi_; every « € S} = Ann(S) .

is an ideal of F[x]. If I #0, e.g., if V is of finite dimension, then the
unique monic generator of Ann(S) is called the minimal polynomial p_S(x) for
g, If V is of infinite dimension an annihilator ideal might very well be

zero, e.g., V= F[x] and T = D, D being the differential operator.
Homework problems: v

Page 198, Exercises 7, 8, 10



2. The Primary Decomposition Theorem. Let U, and U, be subspaces of the

vector space V. Then V is the direct sum of U and ¥, if (@) Y, nU, = 0 and

(b) U, +U, = {e, + o,la, €U, o, € U,} =V hold. It is easy to see that

(a) and (b) together are equivalent with (c) For every vector « € V one has

a=a to, with unique « € U, i=1,2. We say that V is the direct sum of

o, € V,. If this is the case then one writes V=V, @ .. ® V.
If T: Y —> V is linear then a subspace U of V is called invariant if

T(xt) € U holds for all a € U

Examples. 1. ker(T) = {a|T(x) = 0} and im(T) = {BIB = T(a) for some ‘« € V}
are invariant subspaces of V.

2. Let p(x) be any polynomial and T:V-— V be any linear map.. Then
U= {«lp(T)(x) = 0} = ker(p(T)) is an invariant subspace: If p(T){x) = 0,
then p(T)T(«) = (p(T)oT) (@ = (Top(T))(a) = T(p(T)(x)) = T(O) = 0. Hence,
if « € U then T(a) € U. ‘ | |

3. Let U be an invariant subspace of V. Then T can be restricted to U and we
may safely talk about the minimal polynomial pU(x) of U for T.

4, The intersection of invariant subspaces is invariant. Hence there is for
every subset S of V the invariant span ,<8>1 of 8, i.e., the smallest

invariant subspace which contains S.

Lemma. Let T:V— V be a linear map on the finite dimensional .Vector
space V. Assume that ;':_ |

. py (%) = P, (x)p, (%)

where p, (x) and p,(x) are monic polynomials which are relatively prime. Then
V is a direct sum of invariant subspacés whose minimal polynomials a‘re.pl(x)
and pz(x), respectively:

V=V, @ V, 5 V, are invariant, i.e., T(V,) s A and pv (x) = P, (x).
i

Proof. We define V, = {o:lpl('_l‘)(oz) = O} and V, = {alp,(T)(x) = 0}. We already
know that V, and V, are invariant subspaces of V. Because p,(x) and P, (%)
are relatively prime one has '

1= g (x)p, (%) + q,(x)p,(x)
Thus: id, = I= q,(T)ep,(T) + q,(T)op,(T) R

R
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Let @ € V. Then:  « = (q,(T)ep,(T)a) + (g, (T)ep,(T))(x)
We claim : &, = (q,(T)ep, (T)Nx) €V, , «, = = (q,(T)ep, (T))x) €V,
Notice: P, (T)exy) = (py(T)e qz(T)°P2(T))(0() = (g (T)opy(T))a) =

_Assume x €V, nV, . Then

2

Hence o €V, and a s1m11ar"argument'*shows—o: eﬁv

p,(T)(a) = 0, P,(THe) = O

and id, = I= q,(T)op,(T) + q,(T)ep,(T)
yields « = (q,(T)ep, (T () + (q,(T)ep,(T)){ax) =0
Hence: V=V oV,

By the very definition p,(x) is annihilating for V, = {alp, (T){a) = 0} and
the same holds for V,. Hence:

pvl(x)lpl(X) and Py, (x)1p,(x)
We are going to show that p(x) = p‘v (x). pV (x) is annihilating for ‘V. Let

xeV. Then a= o +a, where o € V‘.' But then

P(THa) = pvz(T)opv;(T)(al) + pVI(T%sz(T)(az) =0+0=0

This shows that
Py (%) Ipvl‘(X) . pv2 (x)

But
pVI(X)Ipl(X) and pvz(X)lpz(X) = pvl(x)-pvz(X) Ip(x) = P, (x) D, (X) = Py(x)

Hence: pv (x)-pv(X) = P‘V(X)

We have deg(p,v (x)) < deg(p,(x)) and deg(p‘y (x)) < dég(pz(x)), but also
deg(pV Py, ) = deg(pV ) + deg(pv ) = deg(py) = deg(p,) + deg(pz)

Hence: deg(pyl) = deg(p,) ‘and deg(pvz) = deg(p,)

Therefore Py (x) = p,(x) and Py (x) = p,(x) . O
1 . 2

Definition: Let T: ¥ — V be a linear map on the finite dimensional . vector

space V. Let pv(x) = pl(x)rl.....pkrk(x) be the prime factorization of the

minimal polynomial for T. Then the invariant subspaces
v, = {alp, (1) (@) = 0} = ker(p, (T) "' (&) 5 1= Lk

are called the primary components of T.

Ry
Ry
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If we put q,(x)= pl(x)r1 and q,(x) =

pz(x)rl.....pkrk(x) then it follows

from the lemma:

Vo= ea_u_,_pv;(x.)_:-_pr(x)land_pn_(_x) = nz(x)rz.....pkr"(X)

Assume pz(T) (a) = 0. We wish to show that « € U. Now oz = o, where

o, €V, and o, €U Thus pz(T) 2(a) = pz(T) (0‘1) + pz(T) (0‘2) = 0. So
pz(T)rz(oc ) =0 and pz(T)rz(o:z) = 0. Because the minimal polynomial of. v, is
p (x) , the minimal polynomial of «, is of the form p (x)° where 0Os 8 <r,.
Now p (x)® Ipz(T) (oz ) because of pz(T) (oc ) = 0. But this is only pos&uble

in case that s = 0, i.e.,, @, = = 0. Hence
v, = {alp, (T)*(«) = 0} = {ala € Uy, p,(T) *(a) = 0}
o ()2
and gvz(X) -_pz(X)
This proves

Theorem 3 (Primary Decomposition Theorem) Let T: ¥ — V be a linear map on

the finite dimensional vector space V. Then V is the direct sum of its

primary components V, = {o:lp (T) "(«) = 0} where p\l(x) D, (x) ""-._pk-rk(x)

is the prime factorization of the minimal polynomial of V¥ for T. Moreover,
p ,
P, (x)ri is the minimal polynomial for V,. o

Homework problems: i
Page 213, Exercise 9

Page 219, Exercise 4

Page 225, Exercises 3, 10, 15



3. Quotient Spaces. Let V be a vector space over the field F and let U be a
subspace of V. Then '

o sy iff o -0 €l

is an equivalence relation on V. It is also easily proved that =y is a

cqngf’ué‘n‘c‘e"‘on'“the“'vector"-space~--~V£--~~’I’-h&t—-is—,~ -
o =y & and B, =y B, implies that « + B=o, + 8,

xSy &, implies that c.a; E C.ax, holds for every c e

We may define on the set V/U of all equivalence classes a vector ~épace

structure according to the followihg rules: '

{a] + [B] = [x + B] and c.[o] = [c.]
The map Ay’ V—»V/U, ar>[a]
is obviously linear and
ker(qU) =y
Hence, by the equation: rank’(qu) + nullity(qU) = dim(V) we see that ‘
dim(V/U) + dim(U) = dim(V)

The proof of this equation is based on the fact that

If «, s o, is a basis of U and [y, 1. v sl ] 2 basis of VAU then

Oyy eer g Ugs Cgyqs eone 5 Oy is a basis"qf V.
Lemma: [« ], ... sl ] are linearly independent in V/U iff
a, o e Ao € U iff a =.=a = 0
Proof. This is obvious because of
ax +taoc €l iff ['_3‘;“1 oo ta e ]=U iff
a o, T+ 0 # amﬁam] ={0] .o
Now assume that T: ¥V — V is linear and U is invariant under T. Then T

induces a linear map between the factor spaces:

T: V/U— VU, [a] — [T(x)]

. P
.r,";"



The map T is well defined: If «, = «, then T(x,) = T(x,). Here we use that U

is invariant.

Lemma: The minimal polynomial P[aj(ﬁ) of [«] for the linear map T on V/U

divides the minimal polynomial py(X) of o for ine linear map T on V-

po(T)(lal) = (8, + 8, T + wc + (1)) (o) = (8,0 + 8, T(a) + vor + T@)] = U

Thus pg(x) is an annihilating polynomial of [«]. This is A
Prog () IP(X) « O

Similarly: Py /U(x)lpv(X) .

Let S: U —» V be a surjective linear map between vector spaces. Then one
has the homomorphism theorem for linear maps: '

U/ker(S) 2V , under the map S : [a] + S(x)

If we are considering vector spaces with designated linear maps, say (V,,T,)

and (V,,T,), then a linear map is admissible if it also obeys T. That 'is,
S(T,(a)) = T,(S(«)) holds for all « €V,

Exercises: Show that for an admissible map S, ker(S) is Tl—invarié.nt in V,
and im(S,) is T,-invariant in V,. Formulate and prove the generalization of

the homomorphism theorem for admissible maps between vector spaces with

" designated linear maps.

T



4, Cyclic Subspaces. An invariant subspace U of V is called cyclic if there

is some vector o such that U is the smallest T-invariant subspace which

contains U:
U= <{a}>p

It _Ea,(}.),_f—', a, + 8, X+ . +x* is the minimal polynomial of «, then

Ay =0y A = T(xX)y ooy O} = T* () are linearly independent and

Ky = o
T () = =80 = e — 8y 10,

Hence, if B=coay + et Cp X, then T(B) = cya, + oo + Cp_ 0. It

follows that <oy T(at)yeeey Tk'l(a)> is invariant and therefore,
U= <dad>y = <y T(yeeny T )

Theorem 4. If U = <{a}>p is a cyclic subspace then dim(V) = k, wheré k is

the degree of the minimal polynomial of « for T. O
Let B € U. Then B = cyay + oo + ¢ 0, With unique ¢, € F. If we put '
r(x) = cy+c,X+ .t c:k_lxk'1 then we see that there is for evefy B a
unique r(x) such that
r(T)(«) = B , where r(x) = 0 or deg(r(x))<k
If p(x) = q(x)py(x) + r(x) , then p(T)(o() = r{T) ().

The polynomial ring F[x] is a vector space over F and multiplicatidn by x
may be considered as a linear map: f(x) +—» x-f(x). Let I be a set of
polynomials which is a subspace of F[x]. It is quite obvious that I is

invariant if and only if I is an ideal of F[x].

Theorem 5. Let U = <{«}> be cyclic. Then the surjection
e,: Flx] —>» U, p(x) +— p(T){)

is a an admissible linear map where
ker(e,) = (pg(x))
is the principal ideal generated by the minimal polynomial V under T. Hence:

F[X]/(pm(x)) xU

as vector spaces with designated linear maps. O



L.

The last theorem tells us that cyclic spaces are isomorphic as spaces with

desjgna?ed maps if and only if they have the same minimal polynomial.

Exercise. Let p(x) € F[x]. Then the xLinvariant vector space F[x]/(p(x)) is

cyclic-and-its—minimal-polynomial -is-p(x).-Hence, for. .any_polynomial p(x)

there ifka cyclic Veci'tﬂpr space U with designated map T such that py = p(x).

10



5. Cyclic Decomposition. Let T be a linear map on the finite dimensional
vector space V. An invariant subspace U of V is directly indecomposable if U

is not the direct sum of non-zero invariant subspaces. That is, if

=
d1rect1y indecomposable. The following is a rather trivial observation.

U =U; @-UZ—-,_then.eltheL U, =0, or U, = 0. Of course, the zero space 0 is

Theorem 6. Let T be a linear map on the finite dlmensmnal vector space V.

Then V is a direct sum of directly indecomposable subspaces.

Proof. O is the empty sum of directly indecomposable spaces. Now, given
(V,T) then either V is directly indecomposable, and ‘'we are done, or
V=V, oV, where the V, are invariant under T and different from the zero

space. Hence, dim(wi) < dim(V). The claim follows now by induction on
dim(V). o |
We are now facing the important problem to characterize the directly

indecomposable subspaces of V. We need some preliminary lemmas.

5

Lemma 1: Assume that the minimal polby'nomials p, (%) and p,(x) of « and «,,
respectively, are relatively prime. Then the minimal polyﬁomial of
a= o +o is p(x) = P, (x)p,(x). |

Proof. We have that p(T)(x, + «,) = p,(T)p, (T)«,) + P, (T)p,(T)(a;) = 0.
Hence, p(x) is annihilating «. This is py(x) Ip(x). Now, let q(x) be any
annihilating polynomial for «. Then p,(T)a(T)(wx,) = P, (T)a(T)(x = 0‘2-).: 0.
Hence, pl(x)lpz(x)q(x) , and, by the same token, pz(x)lpl(x)q(x).'Because
p,{x) and p,(x) are relatively prime, one has that p, (x)iq(x) an_d'that
pz(x)]q(x). Again, because the p, (x)‘ are relatively prime, one has that
p,(x)p,(x)q(x). o ’

Lemma 2: Assume that the minimai polynomial for V is a power_. Aof an

irreducible polynomial. Then there is a vector « such that Py (X) =’p\v(x).

Proof. Let o, .., o, be any basis of V. Then pg (x)lpv(x)' where
i ‘

pv(x) = p(x)" and where p(x) is irreducible. Hence, each pa (x) is a power

of p(x). That is, pa (x) = p(x)"* and p‘v(x) is as the lowest common multlple

of the P, (x) equal to some Po, (%) Tk where r = r.. O

11
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Theorem 7. For any linear map T: V — V on the finite dimensional vector

space V there is some « € V such that PalX) = p‘v(x).

Proof. We first apply Lemma 1 to each primary component and then Lemma 2. O

Corollary. deg(pw(x)) < dim(V). o

Lemma 3: Let T ¥ — ¥ be a linear map on the flmte dimensional vector
space V. Let o, be any vector in ¥ such that Pq, (x) = p‘v(x). Assume that we

have further vectors o,y o such that Po, = = Py U where ¥, =0 and
i-1

where U, = <o<1>T B 0o < > for 0 <ix k. Then, in case that U, c V., one

can find a vector o, such that p(xK " Py, /U and where the sum
: + v k

U =y + <°‘k+1>T is direct.

k+1

Proof. We assume U _cV, i.e., V/U, # 0. In order to simplify notat.ion we
set p;, = p(xi y 1= 1yuy k and py,, = p"-‘!/lL'k' The map T induces the various
factor maps V/U, — V/U,, [cx]u — [T((:t)]‘Ui . All these maps are denoted
as T.

Because pl(T)(oz) = 0, we have that pl(T)(a) € @, is true for every o 'Hénce,
p,(x) is an annihilating polynomial for T where T is the induced linear map
on V/U,, {a] — [T(x)]. Because pz(x) is the minimal polynomial for V/Ul,
we conclude p, (x)ip,(x). Similarly, because pz(T')([oz]) = U, holds for every
class [a]l € V/U,, we have that p,(THa) €U, U,. Hence, p,(X) is an
annihilating polynomlal for T , where T is the induced map V/U, — V/U
Because p,(X) is the minimal polynomlal for T on V/U,, we conclude
P, (x) P, (x). Finally, because Py(x) is the minimal polynomial for T on
V/U,_, we have that pk(T)[oz] = ki ‘holds for every class [a] E\//Uk 1
Hence, pk(T)(o:) el _, s U, . Hence, pk(x) is an annihilating polynomlal for
T on V/U,. Because Prs1(X) is the minimal polynomial for T on V/U,;, we

conclude p,,,(x)lp,(x). Hence, we have a divisor chain of polynomials:
Pre1 (%) 1P () ene i p, (%) 1Dy (%)

In order to find some «,, such that p(xk 1(x) T Pyeq (%), we first pick any
+ .

class [B] in V/U, such that

pw](X) = Pyyy (%)

i
F
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We have for any « € [B] that pku(x)lpa(x). Indeed,
P (THIBD = Pl TH{Ial) = [Pe(T) ()] = [0

Hence, p{m(x)lpa(x). But p[B](x) = pku(x). We are going to show that we

“can tind in [B)] somé « such that pg(x) = py;7(x)—Any-such-« will-serve-as

an,ozkﬂ_,_”f_or the lemma.

Bécause pkﬂ(x) divides all other polynomials p, (x) we have q, (x) such that
p,(X) = Q,(X)*Py,, (X)s P, (%) = Q,(X) *Dpyy (X} woey P(X) = Q. (X) * Py, (X)

We also note that

(THB) € Uy = <027 @ oo @ <>,

Pyss

Hence: Prs (THB) = g, (Thot, + e + g (To
for certain polynomials g, (x). We are going to show that all these

polynomials are divisible by pku(x):
q, (T)epy, (T)(B) = p(T)(B) = 0 = q,(T)eg, (T)a + .0 + q, (T)og (T)exy
Because U_ is a direct sum of the <oz.l‘>T, we must have that
q,(T)og, (T)ox, = 0y verey @ (T)ogy (Toy =0
Because p,(x) is the minimal polynomial of «,
p,(x) 1, (x)g, (), ies, q (XD, (X)1q,(x)g, () or p,,,(x)|g,(x). Hence:
g,(X) = p,,,(x)h, (x) |

Similarly, ‘
q, (T)opy, (THB) = PATHB) = q,(T)g (Tl + v + q,(T)g (T, € U, = <a1>
Again, because U is a direct sum of ‘the <o >T’ we must have that -
Qy(T)og,(T)(e,) = 0, y Qp(T)og, (T)(or,) =0
Because pz(x) is the minimal polynomial of «,,
p,(x)1q,(X)g,(x), Ly q,(X)Py,, (%) 1q,(x)g,(x) or py,,(x)1g, (). Hence:
£,(%) = Dy, (%) by (x)

Finally,

P
ity
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(1) Dpey (TH(B) = PUTN(B) = @y (T, (T + eoe + QUTIEL(TI € Uy

Because U, is a direct sum of the < >T’ we must have that

Qy(T)egy (T)(a) = 0

Because p,(x) is the minimal polynomial of o,

Py (x) 1 q (%) g, (%), ie., qk(x)pk+1(x)lq;(x)gk(x) or nki;’(ﬂxA)lgk(x). Hence:
g,(X) = py,, (X)+hy(x)
We now define:
&,y =B - hl(’i‘)ot1 = woo = hy (T)oy
We have &k+1 - p €U, hence (o, ] = [l mod(U,). Now,
Prey (THs,) = Prag (TH(B) = P (TR, (Thety = e = Pyrs (TIB(Thot, =
Praa(TH(B) = ()0 = woe = £ (Tt = 0 -
Hence, quu(x) IPgey (X)) But Pres (X) ijak”(x) as seen before. .This is
Pya1(X) = Po (%)
Finally, we wish to show that the sum of U, and <ozk“>T is direct.‘.A'ssume

that g(T)(ozku) € U, This is the same as saying that g(T)[akH] = Uk holds
in V/U,. But (¢, 1 = [B1. Therefore», p[aku] = p[m :pkn. Thus p,,,(x),
which is the minimal polynomial of [ozku], must divide the annihilating
polynomial g(x). Hence, g(x) = h(x)pkn(x). Thus, g(T)(o:ku) =0. 0

Theorem 8 (Cyclic Decomposition Theorem). Let T: V —» V be a linear map on

the finite dimensional vector space V. Then V is a direct sum of non-zero

cyclic subspaces:

V=V, 0V, 6.0V, V =<gd

such that p‘V(x) = p,_v(x) and Py (x)lpv (x) for i=1, 2ye0sy rs O
1 i i-1

Corollary 1. An invariant subspace U of V is cyclic if and only if |
deg(py(x)) = dim(U) -
Proof. In Theorem 8 we have dim(V) = deg(p‘v) if and only if V = V,, hence,

if and only if V is cyclic. O

14



Lemma 4. (a) Assume that V, = <oz1>T and V, = <oc2>T are cyclic and that

p,(x) = pal(x) and p,(x) = Py, (x) are relatively prime. Then V =V, + v,

cyclic, the sum is direct and V=V, 8V, =<a + a2>T

(b) Assume that V = V, ®V, where V is cyclic. Then Py (x) and Py (x) are
' : 1 2

relatlvely prime.
Proof. (a) If o€ <> n<a&,2, then PaI(T)(“) = Paz(T)(“) =0 "and,
therefore, palpa and p(,llpu2 . Because pal(x) and paz(x) are relatively
1 . .
prime, this is only possible in case that py(x) = 1. Hence, o = 0 and the
sum is direct. By Lemma 1, the minimal polynomial of «=a; + «, is
Palx) = P, (x)+p,(x). Hence:
dim(<a>T) = deg(py) = deg(p,) + deg(p,) = dim(V,) + dim(V,) =
dim(V, + v,) - dim(V, n Vz) = dim(\l1 +V,)
Therefore, <a>T =V, + V,. a
(b) Let deg(p,(x)) = m, deg(p,, (x)) = m,, deg(p, (x)) = m, and
1 2
dim(V) = n, dim(V,) = n,, dim(V,) = n
Then, n = n, +‘n2, and m < m, + m, because V=V eV, and p‘vl(x)-pvz(x) is
annihilating V. Because V is cyclic, m = n. Also, the degree of the minimal
polynomial is < than the dimension, hence m, <n;, m <N, Therefore:
ms<m +m sn, +n, =n

i

We conclude m = m, + m,, i.e.,
Py (x) = 1;>W1(X)op\v2 (x) = I-C-m.(pvl(x),pwz(X)), Le., pVI(X) and p\,z(x‘)‘ are
relatively prime. 0O

Corollary 2. V is directly indecomposable if and only if
(a) V is cyclic. (b) pv(x) = (p(x))" where pv(x) is irreducible.

Proof. Assume that (a) and (b) hold. Then, if V=V, & V,, p‘v (x) and pv (x)

must divide pv(x) because Py (x) certainly annihilates V, and Vz.- Hence,

(x) and Py (x) are powers of p(x) and, according to the last lemma, also
. o

i,
Yoo
%
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relatively prime. This is only pdséible if one has that r, =0, i.e,

A =@, fori=1ori=2

On the other hand, if V is indecomposable then, because of the cyclic

decomposition theorem, V has to be ¢yclic, The minimal polynomial-of V-has

. _to_ be a_prime_power because of the primary decomposition theorem. a

Theorem 9. Let T: ¥V —> V b a linear map on the finite d1men51onal vector
space V. Then V decomposes into a direct sum of cyclic spaces E, where the
minimal polynomials of the E 's are powers of irreducible polynom1als. The
spaces E, cannot be decomposed any further into direct sums of invariant

subspaces.

Proof. This is an immediate consequence of Theorem 6 and Corollary 2. O

In order to obtain this decomposition, we may start with the decoinposition

into the primary components:

V=V, ®..8V,  where pv(x) = pl(x)'l..,..-pk(x)'k, Vv, = {alp, (T)"i (x)=0}

and then apply the cyclic decomposition theorem to each V..

V, =E,®... oE, where p, (x) = p,(x)""9 and 0<r  <.ulr, =1
1 lj

Homework problems:

Page 190, Exercises 6, 7

Page 205, Exercises 5, 6, 7, 8

Page 213, Exercises 1, 2

Page 231, Exercises 7, 8 i

o]
P
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6. Invariant Factors, Elementary Divisors. Let T be a linear map on the

finite dimensional vector space V. Assume that:

V=V, om0V, where V, = <q >T and ';;>‘y (x)lpv (x) iz 25

’I‘he polynomlal p, = p\y ann1h11ates V, but also V,se00,V, because the

minimal polynomials of these summands form a d1v1sor chain. Hence, pl(x)
annihilates the whole space V. On the other hand, there is a vector whose

minimal polynomial is pl(x), namely the generator o of the cyclic space V,.

Hence, pl(x) = pw(x). That is, given any other such decomposition of ¥:
VzU &..0U, where U = <B > and p[U (X)Ipm (X) iz 2,...',‘ I3

we certainly have that p (x) = p‘v (x) = plU (x) = q,(x). We are gomg to show

that r = s and p, (x) = q, (x). But we need to know more about cyclic spaces.

Lemma 1. Let a be any vector in V and q(x) be any polynomial. Let d(x) be

the greatest common divisor of py(x) and q(x). Then the minimal‘pollynomial

of the vector g = q(T)(x) is p(x) = Zoiiix)) . Moreover, <g>T = <d(T)(q':)>T

Proof. We have py(x) = d(x).p(x), a(x) = d(x).r(x) and where r(x) and p(x)
are relatively prime. (If elr, elp, then py = d-e-p’, q = d-e-r’. Hence, d-e
divides py as well as q. This is d+eld because d is the g.c.d.(pa',"q). But
this is possible only if e = 1.) ‘

p(x) annihilates B: p(T)g = p(T)eq(T)x = p(T)ed(T)er(T)a = r T)opa(T)a = 0.
Now assume that s(x) is any polynomial which annihilates 8. We are go_mg to
show that it is divisible by p(x): _

0=s(T)B=8(T)eq(T)x = s(T)ed(T)or(T)x , i.e., pq(x)ls(x)-d(x)-r(x),
d(x)sp(x)Is(x)+d(x)-r(x) hence, p(x)|8(x)+r(x). Because p(x) and r(x) are
relatively prime, we conclude that p(x)|s(x). Hence, p(x) is the minimal
polynomial of B. ‘

Let p’ = d(T)ax. Because d(x) is a d1v1sor of q(x), it is clear that B
belongs to the cyclic subspace generated by B’. On the other hand, because
d(x) is the g.c.d of pa(x) and q(x) we have polynomials ql(x) and qz(x) such
that: d(x) = q,(X)Pe(X) + q,(x)q(x), iey, d(THa) = q(T)A(T){x) = 4, (T)(B)

h

and it follows that B’ belongs to <> . O e
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Lemma 2. Any invariant subspace of a cyclic space is cyclic. _
Proof. Let U be a subspace .of the cyclic space <a>. Then let
I={q(x)1q(T)x € U}. It is easy to see that I is an ideal of F[(x]. Hence,

1= (p(x)) for some polynomial p(x)Letp-=p(T)x. Then<p>p< U.-Let-y-be

any vector in U, Then 7y = q(T)x and, therefore, q(x) € I. But ‘then

q(x) = d(x)p(x) and it follows that 1'= d(T)p(T)x = d(T)B € <B> . O

Theorem 10. Let T: ¥V —> V be a linear map on the finite dimensional vector
space V. Then q(x) +— <q(T)a>p defines a bijective correspondence between

the divisors of py(x) and the invariant subspaces of <a> .

Proof. Let U be any invariant subspace of <o>7. Then, by Lemma 2, U is
cyclic. That is, U = <g>7 where B € <a>T . But then g = q{T)x for some g(x).
According to Lemma 1, we may assume that U = <d(T)(x)> where d(x) divides
Py(x). Now, if we have <d,(T)a> = <'d2(T)oz> = U, where d,(x) and d, (x) both

pq(x) _ pa(x)

divide py(x), then, by Lemma 1, pU(X) =g & - 4® + It followé that
o 1 2

d, (x) = d,(x). O

We certainly have that <d (T)a> < <d,(T)x>, in case that d,(x) ldl(x)'. On the
other hand, if we assume that <d1(T)Ex> € <d,(T)e> for divisors d (x) and
dz(x) of py(x), we first conclude <d1(T)oz> = <e2(T)d2(T)a> where ez(x) is a
divisor of the minimal polynomial of d,(T)a. This is because of Lemma 1,
applied to the subspace <d,(T)a> of <d,(T)a>. Hence, e,(x) divides ‘%% ’

2

and we conclude that ez(x)dz(x) is a’idivisor of pa(x). By the last theorem,

we have that d (x) = ez(x)dz(x), i.e.,' dz(x)ldl(x).

The last theorem establishes an order reversing isomorphism betweeh the

monic divisors of pg (x) and the 1'n_var1'ant subspaces of <a>g.

Equipped with this complete knowledge about cyclic spaces and their
invariant subspaces, we pick any vector in « and any polynomial 'q‘(x). The

image q(T)<a>p is an invariant subspace of <a>. It is cyclic and trivially

generated by q(T)(x). Hence,

18
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and d(x)-= g.c.d. (Pg(X),a(x))-

» Assume: V= < 1_),T,, Doeee D < (Xr.>,. 2.4 B‘l ZT_._QMLU. - QS,B.,,? T ,_,.Q,-,L‘,‘...‘_,,I_p;l..l_, a 5__.|_. 2;.!..9,1.,,,,

Lemma 3. Let « be any vector in V and let q(x) be any polynomial. Then
o P (%)
Q(T)(<e>) = <q(T)()>p and dim(q(T)<a>q) = deg(p(x)) where p(x) = -

g . —

We already know that p, =q, = p, . We apply the map p,(T) 1",0‘ both
decompositions:
This is true because pz(T) annihilates «, and all the other o o But notice:
. pV(X)
dim(pz(T)<0(1>T) = di’m(pz(T)<Bl>T) = deg——~
p,(x)

This follows from Lemma 3, «, and B, have the same minimal polynomial,
namely Py and the g.c.d. of p, and p, is p,, because of p,lp,. Hence all

the other summands of the second decomposition of p,(T)V must also be zero.

In particular:
P, (T)(B,) = 0, i.e., P,(x)1q,(x).
Of course, by symmetry, we also must have qz(x)lpz(x), i.e.,
P, (X) = q,(x)
We can repeat this argument:
P5(TIV = py(T)<o > & P,y (T)<o > = pﬁ(T)(BQT @ Py (T)BT voe @ ps(T‘)<BS>T

Again, the dimensions of the first two summands of the second decomposition
are equal to the dimensions of the two summands of the first decomposition.

Hence, all other summands of the second decomposition must be zero. In

particular, ,
P4 (T)<By> = 0, iwes, Py(x)1q,y(x)
Of course, we then must also have tﬁat qa(x)lpa(X), ice.,
Py(x) = qy(x)

We conciude, that r = s and that p, (x} = q (x).
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Theorem 11. Let T be a linear map on the finite dimensional vector space V.
Then V admits essentially only one cyclic decomposition subject to the

divisor chain condition for the minimal polynomials.

Proof. <a& >y & <B>T = Fixl/(p(x)) 0 e

Definition. “The ~divisor chain "p,l.:1p;, "of “polynomials in—the ~Cyclic

Decomposition Theorem is called the list of invariant factors.

Let p(x) be irreducible in Fix]. U= Up(x) is called a generalized
eigenspace if U is different from the zero-space and if U= {«lp(T) () = 0
for some r20}. If p(x) is linear, i.e., p(x) = x-c, then U contains an
eigenvector for ¢ and the eigenspace E = {| T(at) = cocx} iB anv inva_fiant
subspace of U __. . The subspace E_ is in general not a direct summand of U,
e.g., if U is cyclic and Py is p(x)" for some r > 0. According td the
Primary Decomposition Theorem, V is the direct sum of its generalized
eigenspaces. Now, every gen'eralized eigenspaces is according to the Cyclic
Dvecomposition Theorem, an e‘ssentially unique sum of cyclic spaces whose
minimal polynomials are powers of p(x). This decomposes V into a direct sum
of indecomposable spaces. On the oth'er hand, if V is in any way decomposed
into a direct sum of indecomposable spaces, we may collect all those
summands <a>T, where py is p(x)’ for‘a:a fixed irreducible factor p(x) of the
minimal polynomial. These spaces add up to U, 4, and can be arranged in such
a way that the minimal polynomials form a divisor chain. Hence they are

essentially the same indecomposable _Spaces as before.

Theorem 12. Let T: V — V be a linear map on the finite dimensional vecfor

space V. Then V admits essentially only one decomposition into ndnfzero

directly indecomposable subspaces. 0O

Definition. The minimal polynomials of the directly indecomposable subspaces

of V are called the elementary divisors of T.

Let o be any non-zero vector in V. Then deg(py(x)) = k > 0 and. ‘o:, ‘T(oc),
T*(«) is a basis for <a>p . If py(x) =c, +c,x+ ..+ x" is the minimal
polynomial for «, then the matrix Ay for T with respect to this basis looks

like:

000.. 0 =,
100.- 0 -c A
010-+ .0 -c,

000+ 1-ogy
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If V= <<x1>TeB...eB <@, > then the base vectors o, . TP YT (&), eees

Apy soee 9 Tnk'l(ozk) of the cyclic subspaces form a basis of V. The matrix

of T is with respect to this basis a ‘direct sum of matrices A, = Ay ¢
i

A1 O . . . . 0
— - _0,, S ,__Az » . . e »0.' 1.
o 0 A, - =+ - 0
0o 0 o0 A,
L. - o

That is, for every linear map T on the finite dimensional vector space V one

can finsd a basis such that the matrix A of T is in rational form.

Example: Let F= Rand V = R?. Then for any linear map there is a basis such

that the matrix of T looks like one of the following:

c O ’ c, 0 . 0 -cz|, 0 -az-b?
0c 0 ¢, 1 +2c¢ 11 +2a

This corresponds to the possibilities for the elementary divisors:
(x-c),(x-c); (x~c,)(x-C,); (x-c)?; x* - 2ax + (a? + b?)
Exercise. Do the same analysis for V = R®. Notice, the degree of the pfoduct

of the elementary divisors must be three.
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‘any basis.

7. Cayley-Hamilton Theorem, Jordan Normal Form. Let T: V — V be a linear
map on the finite dimensional vector space V. The characteristic polynomial

ig defined by cp(x) = det(xI - A) where A is the matrix of T with respect to

Tt-is—easy-to-see-that-ep(x)-is-indep endent of the chosen basis.

Here we perceive the determinant as a function with polynomial entries,

i.e., as an n-linear, alternating function with entries from the commutative
ring K = F(x]. '

Theorem 13. Let T: V — V be a linear map on the finite dimensionalx vector
space V. Let U =<a>7 be a non-zero cyclic subspace of V. Then the

characteristic polynomial of the restriction of T to U is equal to the
minimal polynomial of U.

Proof. We may choose as a basis for U the vectors «, T(a), o T Ha)

where k is the degree of p“(x). Now the claim follows by means of simple
determinant manipulations. 0O '

Recall that the determinant of a direct sum of matrices is just the product

of the determinants, i.e.,

[ A, O« o+ o+ . 0 T
O Az - . . ] 0
0 0 A, . . 0
det . . . . = det(Al)odet(Az)~...-det(Ak)
0 0 0 Ay

If V=V,eV,0..0V is a decomposition of V into cyclic subspéces,

where T|V, has matrix A,, we get

cpix) = det(xI—Al)-det(xI—Az)-...det(xI—Ak) = pvl(x)'p‘vz(x)-.--'P‘vk(X)

We may apply this observation to the cyclic decomposition according to the

invariant factors or according to elementary divisors and arrive at

Theorem 14. Let T: V— V be a linear map on the finite dimensional V;ector
space V. Then the characteristic polynomial cp(x) is equal to the prodtict of

the invariant factors and also equavlv to the product of all elementary

divisors. O
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In particular, p‘v(x)lcT(x). That is »the
Corollary (Cayley-Hamilton Theorem), cp(T)=0. O

The characteristic polynomial has the same irreducible factors as the

i

minimal polynomial but, in general, they occur with higher multiplicities:

- —Agsume-that —T-isdiagonalizable,. i.e. ,WP‘V(X)—-‘-m( X=C,)e.e(X=C,). We then
have for the characteristic polynomial c(x) = (x-cl)"1 -(x—ck)“k‘ "where

n, = dim(Ec ).

Assume that the cyclic subspace <o>T has (x-c)' as its minimal polynomial.
Then let a=oy, o =(T-cla, «,= (T-c)?(x)y  wee a_, = (T-c)" o).
These r many vectors are linearly independent in <a>7. Otherwise wé would -
have a polynomial q(x) #0, deg(q(x)) < r, such that a(T)(x) = 0. Hence,

Aggessy Uy form a base of <a>p . Notice:

(T-c)oxg = &y 1€y VT((xo) = coy + o
(T-clu, = a,, i.e., T(x,) = ca, +a,
(T-c)a, = a4, i.e., T(ax,) = co, + @,

(T-c)e._, =0, Le., T(e._,) = cot_y

The matrix of T with respect to this basis is called a Jordan Bloc:k: '

c O O - « 0 O

1 ¢ O - . 0 O

0O 1 ¢ - . 0 0
J = . . 1 ; .

. . . ._ : C

0 0 O 1 ¢

It is easy to see that an invariant subspace for which T has such a matrix

representation must be cyclic with (x-c)* as minimal polynomial.

Theorem 15 (Jordan Normal Form) Let T :V-—V be a linear map on the
finite dimensional vector space V. Assume that all prime factors of the
characteristic polynomial are linear. ‘Then V admits a basis such that the

matrix for T is a direct sum of Jordan matrices. 0O

3
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Such a Jordan decomposition is always possible if F is algebraically closed,

e.g., for F = €. The decomposition is essentially unique because it leads to

the elementary divisors for T.

X7

Assume F = € or that F is algebraically closed:~Then-T-has -an eigenvector.

This_follows immediately from the Jordan Form. More generally, we have the

following: If SeT = ToS then T and S have a common eigenvector. Indeed, if

E. is an eigenspace for T then E, is also invariant under S. Any eigenvector
for S in E; is a common eigenvector. '

Within any eigenspace [E; any subspace is invariant and therefore has a
direct complement. This fact can be generalized to arbitrary invariant

subspaces of diagonalizable maps:

Theorem 16. Let T: V —» V be a linear map on the finite dimensional vector

space V over the algebraically closed field F. Then the following statements
are equivalent:
(a) T is diagonalizable, i.e.,‘\/ is a direct sum of eigenspaces EC_;
1.
(b) pv(x) = (x—cl)-...«'(x-ck), c paipwise distinct.
(c) Every invariant subspace U has a direct invariant complement. That is,

V=Use ¥ for some invariant subspace v.

Proof. The equivalence of (a) and (b) is an immediate consequence of the

Primary Decomposition Theorem and has been shown before.

Assume (b) and let U be any invariant subspace of V. Because the minimal

polynomial of T|U is a divisor of ;ip_v(x) , one has U=U, & ... & 'Ul' “with

eigenspaces U, < U. Now, each U, is a subspace of some E, and, without loss
J

of generality, we may assume that U, <E . But then Ec1 =, @Ui s seee

Ec, =V, @ v’ . Hence, V=U e,".. ol o (Ujo. 0l @E o.. Eok),

i.e., V= Uo U, for some invariant subspace ¥’.

Now assume (c), i.e., every invariant subspace is a direct summand. Let «,
be any eigenvector. Then <« > is invariant and therefore V = <«,> @‘le with
some invariant subspace U,. If U, 20, pick any eigenvector «, of T within
U,. The sum <a1>‘ + <a,> is direct and, obviously, an invariant subspace of
V. Hence, there is some invariant ¥, such that V= <> @ <«,? o, If U,

is different from the zero-space, there is some eigenvector «, within U, and

at
e
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.

the sum <a > + <a,2> + {ar,> 18 direct etc. Hence, V is a direct sum of one

dimensional spaces, each one generated by an eigenvector. That is, T is

diagonalizable. O

Definition. A linear map T is called semi-simplé if évery invariant subspace

ig-a-direct-summand. . .

Wé have shown that for finite dimensic_)nal vector spaces over algebraically

closed fields the class of semi-simple linear maps coincides with the class

of linear maps which admit eigenbases.

It follows from the Jordan Normal Form'that any T is a sum of a semi-simple
map D and a nilpotent map N: For each Jordan Block J we have that T|E is the
sum of D(E) = c¢.I and a nilpotent map N(E). Here E is the indecompdsable
subspace for which J is the matrix of T|E. If we define T(E) as thé linear
map which is T|E on E and zero on the other indecomposable spaces E’, then
it is clear that T is just the sum of the T(E)’s where T(E) = D(E) + N(E).
The sum of the N(E)’s is nilﬁotent because the sum of commuting nilpotent
linear maps is nilpotent. Hence T = D + N where D is the sum of the D(E)’s
and N is the sum of all N(E)’s. It is also clear that we have DoN = NoD. It
is quite remarkable that one can achieve such a decomposition f_dr finite

dimensional vector spaces over arbitrary fields.

Homework problems.

Page 189, Exercises 2, 3 Page 241, Exercise 1
Page 198, Exercise 2 ; Page 250, Exercise 10
Page 218, Exercise 2 Page 261, Exercise 4

Page 230, Exercises 1, 2
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8. The Smith Normal Form. Computation of the Invariant Factors. Let M be an
m x n matrix with entries in the polynomial ring F[x]. M is said to be in

Smith normal form if the only non-zero entries can be found on the ‘main

diagonal and -if—the -non-zero—entries form a divisor chain of monic

polynomials. That is, M looks like

. J
Notice that 1 divides every polynomial and that 0 is divisible by é-very
polynomial. Hence, all the entries on the main diagonal form a divisor
chain. That is, ; ' ‘

Py PGienyieny fori= 1,eeey 1 where 1 = min(m,n).

Assume that M is a scalar matrix, i.e., all entries are elements of F. Then

by means of elementary row and column operations, A can be transformed into

.’1 ]
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The number r of units on the main diagonal of M is the rank of ‘A,

Examples. The following matrices are in Smith normal form.

— {00 3 .rl U‘ 1 0 0 0}-
o (a) 010 (b) {0 x (C) 0x+1 0 0
— ;OOO e 102 0 ;0 R TEL OJ

We are going to show that any matrix A = A(x) with entries taken from F[x],
i.e., A€ [F[x]m X n, can be transformed into Smith normal form by means of a

succession of elementary row and column operations. As in the scalar case,

we distinguish three types of elementary {(row) operations:

R1. Multiply one row by some scalar c # 0.

R2. Replace the rth row A by A + p(x)A, where r #s and p(x) isv any

polynomial in F(x].

R3. Interchange two rows of A.

It’s easy to see that R3 can be obtained by a succession of operatiohs of
type 1 and type 2. The column operatiéns Cl - C3 are defined similarly. We
say that A and B are row equivalent if B can be obtained from A by mesans of
finitely many row operations. Because any row operation is reversible"lby a
similar row operation, it is clear that row equivalence is an equivalence

relation. We need a preliminary result.

Lemma 1. Assume that the first column of the matrix A(x) is different from
zero. Let p(x) = g.c.d.(pn(x),..., pm(x)). Then A(x) is row equivalent to

a matrix B(x) which has

(p(x)]

as its first column.
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Proof. We need a preliminary remark. Let P = (p, (x)), i€ I, be a family of
polynomials. Then the greatest common divisor d(x) of P is the generator of

the principal ideal (P), which is thel' ideal generated by P. Recall, (P) is

~the set-of all finite-linear-combinations: — - -

,,,___(..P_)-.:,_{_fi_l.(,x_)_.:pi_z;(‘x,)_,_sl-_,. T x,),-,pi,l;(X)“‘i,)‘E-I,.,,fiD (x)_€ Flx]}

Let P’ be obtained from P by replacing p, (x) by c-p, (x), where c is a
constant different from zero. Then (P) = (P’) and P and P’ have the same
greatest common divisor. Similarly, if we replace p; (x) by p, (x) + £(x)p;(x)
where i# j and where f(x) € F[x], then the g.c.d. remains the same. In
particular, the elementary operations don’t change the g.c.d. of a given
matrix. Also, row operations don’t change the g.c.d. of any given column and

column operations don’t change the g.c.d. of any given row.

In order to prove the lemma, let p; (x) be a polynomial in the first célumn

of lowest degree:

PI(X) <.

A(x) = p;,(x) . .

pm(x) o o
We divide each p, (x), i # j, by p;(x) with remainder:
p, (x) = q; (x)p,(x) + r; (%), 0 = 013‘5;:(’I‘i (x)) < deg(p,(x)) or r;(x) =0

The first entry of each of the rows i ¢ j can be made r, (x) by adding to the
ith row (-q;(x))-times the jth row. A multiplication of the jth row _by a
constant different from zero makes P; (x) to a monic polynomial f>j(x.-If we

interchange the first and jth row then A(x) is row equivalent to:
pj (x) o o
I‘z(x) o o

rl(x) . .

rm(x) .

e o
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Any r,(x) is either zero or has a degree less than the degree of f)j {x). We

may repeat the process until we get the desired result. 0

Lemma 2. Let A(x) be an m x n matrix where the entries are polynomials in

F[xi. Then A(x) is equivalent to a matrix which is in Smith normal-form:

PE&fTTHéi‘é“""i‘E’z""'ﬁb‘t’h‘ing*”to*prove"“forfthe-"zero»—matri—x.»—»—I—f--»-A(—x)»—--i-s-diff.'erent
from the zero matrix we show that A(x) is equivalent to a matrix
pl (X) 0 « o o 0

O o o« o o o
Bw=| Dl p
"]

where p,(x) = g.c.d.(A(x)) = g.c.d.(B(x)). This will prove the claim. -

Let k = k(A(x)) be the minimum of the degrees of the entries p”(x) of A(x).
By interchanging columns we can move an entry of degree k to the first

column. According to Lemma 1, A(x) is equivalent to a matrix like

-q(x) a(x) « o o .-
0 o . e

L4
-

0

Of course, deg(q(x)) < k. Now, if q divides each entry of the first row then

by adding multiples of the first column to the other columns we gét

-q(x) 0 o o e 0-
O .._. * L .
A~: . .
- S
O « o o o o

Otherwise, an application of Lemma 1 to the first row of A, yields

rql(X), 0. « 0
a’'(x) « « ¢ o o

2 S o
T,




where now deg(ql(x)) < deg(q(x)) < k. (One has that q = g.c.d.(q,a,...) and
therefore deg(q,) < deg(q) in case that q, # 49, i.e, g does not divide
every entry of the first row of A.) ‘Now, if q, divides each entry of the

first column then by adding multiples. of the first row to the other rows we

get

q,(x) 0 « - « 0
O ¢« o & & o

O . . e . . e

b ol

Otherwise, an application of Lemma 1 to the first column of A, yields

q,(x) a’(x) - - - -
0 . s e e e

. .. S’)

. .

0 . . . ¢« o

where deg(q,) < deg(q,) < k.

After finitely many steps, we must get a matrix of the form

-q(x) O o o O-
0 e e e e
A~ - - a
. l :. ) S
O ll' * L L .

where deg(q(x)) < k.

If q(x) divides every entry of S then, because
q(x) = g.c.d.{(A™) = g.c.d.(A)

we are done: A = B and S = R.

Otherwise, there is a column in S which contains a polynomial g(x) which is

not divisible by q(x). If we add this column to the first column of A" then

we get a matrix like

2
O‘[]O.'OM
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Now, g(x) = s(x)q(x) + r(x) where deg(r) < deg(q) < k. Hence, this matrix is

equivalent to

We apply the whole process now to A’ and arrive at a matrix

Qg’(x) 0+ o - 0
0 =+ .+ - .
OMES I Q?

Lo,-.. ..

where degl(q’) < deg(r) s k’ < k. After finitely many steps we must get the

desired matrices B(x) and R(x). O

Definition. Let M€ {F[x]m XD por any k, 1<k <min(m,n), we define

8k(M) = g.c.d. of the determinants -of all k x k submatrices.

Lemma 3. If M and N are equivalent matrices in F[x] then Sk(M) = 6k(N).

Proof. For a fixed k, 1<k < min(m,n), and

I= (e B)y 1S4, <o <m
J= (e Gy 123 Gl jgsm

;-Miljl o o o e Miljk
Mizjl e o o e Miz"k

let D, ;(M)=det| * *

.

. o o o .

M. s . - . .
1 kJ 1 I\III k" k-‘

Then: 5,(M) = g.c.d. DI,J(M);
193 :

If e is some elementary operation then e(M) is the matrix M after the

operation e. We are going to show:
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if f(x) divides DX'J(M) for every I and J then f(x) divides DI,J(e(M')) for
every I and J. Because elementary operations are invertible, the et of

DI,J(M))’S has the same set of divisors as the set of DI’J(e(M))’s. Hence

the g.c.d’s-are the same. .

We_have_to_go_through the two txp_gé of essential row operations.

(a) Multiplication of the rth row by ‘some c # 0:
DI,J(M) = DI’J(e(M)) if g (i e i}
D,,J(e(M)) = DI’J(M) if e i i}

Clearly, fIDI,J(M) iff fIDI’J(e(M)).

(b) Replace row r by (row r plus g{x) X row s):
DI,J(M) = DI’J(e(M)) if r @ iy i}

If re i, i} then

Mi151 vt M‘v‘k
L -
291 - 129k

M .1+g(:’£)Ms,j1 e o+ o M .k+g(x)M$hik

Iy Ty

D, ,(e(M)) = det

Pydy Mikjk

M e e s s M

113y iyig

Ii251 e Mizjk
DI,J(M) + g(x)det R VI =

S1dy e

l\/l‘le [ M‘kaJ

b

DhJ + 0, in case that s € {11,..., SIS SUPPTTIH 1k} or is equal to

D, ;D ; where I’ is a permutation of (ijyeee; i _;» S i, 0000 i)

1,3
At any rate, if some f(x) divides every DI,J(M) then f(x) divides every

D, ,(e(M). o
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Theorem 17. Every matrix Me lF‘[x]m X 1 49 equivalent to exactly one matrix

which is in Smith normal form. ..

Proof. Let N be in normal form:

N = y O where t = min(m,n).

fto .

Of course, the first f,’s may be units and the last f;’s may be zeros. Let

k < t. Assume that a k x k submatrix N ; contains the ith row but not the

ith column. Because the only term N  which is not necessarily zero is
1y3d : '

N;,i0 and this term is missing in N; ; , we conclude that the determinant

D of N is zero. Thus, in order to find the greatest common divisor of

I,3J I,J
all determinants of k x k submatrices, we only have to consider submatrices

.wheré I=J. For k=1, we get & = £, because £, 1f, 1. |f,. For k=2 we
get 6, = £, -f, because f1'f2|fi'fj for i < j. We have 1<i and 2s<j and f If

and fzifj. In general,

6k = fl'fz'n-o'fk

Assume that M is equivalent to N and N’ where N and N’ are in normal form.

Let s be the first k, if there is one, where f = 0. Then

LRER SRS S S SRS

8 1 8
Hence, f; = 0 for some k < s. This is, s’ < s where 8’ is the first kv -.in N’
where f; is zero. One concludes 8 = 8’, by symmetry. ' '
If 1<s then 6 =1 =f;. For any k, 1<k <s, and f =f;, i<k, one
concludes

51{ - (fln.‘.nfk_l)'fk'v: (f;.‘.'.f:(-l).f:[

2
Hence, f, = f,. O

i
B
@y
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Example. Any m x n scalar matrix A is equivalent to exactly one diagonal

matrix which has r-many units on the main diagonal, followed by (m-r) many

zeros. Here r is the rank of A.

Let B be the matrix of the linea'r—'m'ap—T—vith-Te'sp-e-ct-—to—a—--basi-s By Bye

(xI -B) is

where p_l..Ip, is the list of invariant factors.

We know that there is a basis « ..o such that the matrix A for T is in

rational form. But then A and B are similar, i.e.,
A= P;'loBoP
for some invertible matrix P. But then
P-1o(xI ~B)oP = XxI - PTleBeP = xI - A

where xI — A is a block of matrices and where each block looks like:

x 00.. 0 +¢c
-1 x0-- 0 +c
0 -1x « 0 +c

. . * . . .

0 00. . -1zxic,,

o vl

If e is an elementary row operation and M an m x n matrix with polynomial
entries then one has that e(M) = EoM where E is the elementary matrix e(I ).

I, is the m x m unit matrix. If e-1 reverses the elementary operation e,

)
rrs
RS
by
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-1,M. If f is an elementary column operation then

then one has e-i(M) = E
F1(M). Hence, if N i8

£(M) = MoF where F is the matrix £(I,) and £7H(M) =

~the normal form for M then

N = E“0100°E1°M°Floto°Fv

Assume that M is' invertible. Then det(M) "is a non-zero element ceF:

According to Lemma 1, M is row equivalent to a matrix

a(x) a(x) + « » °]
0 o e e

O . . L] » .

Because M, is invertible, det(M,) = q(x)+det(S) is a non-zero constant. That
is, q(x) = 1. It follows that M is row equivalent to a matrix which has

units on its main diagonal. But then M is row equivalent to the unit matrix.

Theorem 18. M € [F‘[x]n XN i¢ invertible iff M is a product of elemeﬂtary

matrices E ..o, B, iff M is a product of elementary matrices FopeesF oo

If we replace in the equation P-1o(xI -B)oP =xI-A the matrix P! by a
product of elementary matrices E, and P by a product of elementary matrices.

: Fj then it becomes apparent that (xI - B) is equivalent to (xI - A). '

It is quite easy to see that each block

- -

x 00+ 0 +c,
-1 x 0.« 0 +c
0 -1x+.«- 0 +c,
XIn —Al = L) . . o [

0 00 -1xtc,,

- ol

of (xI - A) is equivalent to the matrix '

(p(x) )

35



where p(X) = ¢y #C X v ",
Theorem 19. Let T: V— V be a linear map on the finite dimensional vector

space V and let B be the matrix of T with respect to any given basis. Then

the Smith normal form of the—characteristic-matrix—(xI—B)-is——

BN

I

Py
\ 4

where p_l...|p, i8 the list of invariant factors. O

Homework problems.
Page 242, Exercises 7, 12, 13, 15, 19

Page 261, Exercises 1, 2, 3
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9. Euclidean Spaces. Let V be a finite dimensional vector space over the

field R of real numbers. A map

<> ¥VxV—R

is_called an inner product if it has the following _properties:

(a) <c.x|B> = co<xlB>, <o+ Bly> = <alf> + <aly?
(b) <«xlp> = <Bly> :
(¢) <xla> =20 and <xja> =0 iff « =0 "

Because of property (a), for every vector B, the map fB: o — <alp> is
linear. Because of (b), for every « the map f : g +— {x|B> is linear in B.
That is, < | > is a bilinear form. In particular, <oip> = 0 = <alo> holds
for every o« and B. The property (é) says, that the form is positive

definite. The mathematical structure (V,< | > is called a Euclidean Space.
For every « one has <o:|o:>‘.z 0. The’ number

ol = {<ale> .
ig called the norm of the vector o. .For any « # o, the vector

€ = 1 «
o el

is a unnit vector, i.e., a.vector of norm (or length) one.

The vectors « and B are called perperndicular to each other if <«if> = 0. One

writes for this « + B. If « and B are perpendicular to each other then one

has the
Phythagorean Theorem : e + BlI® = el + I
If « # 0 and B is any vector in V, the-vector

Proju(B) = <Bleg>+ey

s
#:
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is called the projection of B in the direction a. It is the only vector

¥ = c.y such that (- 7) L+«

Let €,y Eypeens€y be a system of unit vectors which are pairwise

perpendicular. If the vector « is a linear combination of the g, that is,

X = C o€, + CpeE, +oaeen + CE, multiplication™ of both “sides "‘B‘Sr""'t";‘“"sihdws’”"

that that c, = {afg, >, That is, the coefficients c, are uniquely determined
by o In particular, any orthonormal system of vectors is linearly

independent. If o is any vector in V, the vector
= Kafg,>eg, + et Ll 2.€,
is called the Fourier expansion of « or the projection of « along H,
pro_) (x), where H is the subspace generated by €, €, eesy € It 1s easy
to Bsee that o- prOJ (o) 18 perpendlcular to every g, . 'Hence,
o - 'pI‘OJ () L B, where B is any vector'in H. Let B be any vector in H. ‘Then
(pI’OJE(a) B) belongs to H and in the- equation
« - B = (a = projya)) + (projy(«) - p)
(o = proja(o:)) is perpendicular to (pro,)H(oz) - B). Hence, by the Pythagorean
Theorem, one has :
floc = Bl = lloe - proj, () li* + lprojy () = Bi*
We conclude, jla - Bll2 2 lla - projﬁ(oz)ll2 and equality holds exactly when 8 is

equal to projn(oc). That is, projﬂ(a)' is the unique vector B, in H for which.

the function d(g) = lix - pli, p € H, takes on its minimum.

Let oy ayyeeey 0 be a set of linearly" independent vectors in V. We define
succesively a system of vectors €, €y, such that for every Js
<oz1,...,ozj> = <£1,...,sj> and where the g, are unit vectors which are

pairwise perpendicular. This process is called the Gram-Schmidt

Orthogonalization:

€ = Eq,

ez, - <a,le 2., €, = L €3
2 T 2 2 5171 B2 ||€;||2’

| — - - - .
€, = Q4 {0yy€, 7€, 0y1E,2Ey) E5 = e €3 3 etc
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In particular, V admits a basis of unit vectors which are pairwise

perpendicular to each other. Such -an orthonormal basis is also called a

Cartesian coordinate system. The unit vectors of R" are an example of an ‘

orthonormal system.

Liet oy ,q;—--and——B;,T».r;—,-BH—»bevtwo‘car»te_sian..,coondinate. systems, Then:

% =5 Cy by = 5 <o 1Bu2By
s _ _ - Ho_
and <« o> = Sj = <§ Cuti|§ Cp; Bu? _‘,E Izl Cp; Sy BBy = ;2} E U.ICHJSD =
& CuiCo;
That is, the columns of the matrix C form an orthonormal system. This is the

gsame as saying that
CoC* =1

where for a matrix A, the matrix A¥ is the transposed of A. But then

c¢* = ¢! (for matrices, left ir;verses are inverses) and ¢ !'oC = I shows that
c*oC =1
which now tells us that the rows of C form an orthonormal system.

Definition. An nxn-matrix C is called orthogohal if the rows form an
orthonormal system. This is the same as saying that the columns forin an

orthonormal system. Equivalently, .the inverse of C is equal to c*.

We have shown that the coordinaté transformation matrix between two

cartesian systems is orthogonal. Let T: Y — V be linear. The map' T is

called symmetric if one has for all «, B:
{T{a) B> = <, T(B)>

Theorem 19. The following statements about a linear map on th‘e' finite
dimensional Euclidean space are equivalent.

(a) T is symmetric.
(b) Mat(T) is symmetric for every cartesian coordinate system of V.. .

Proof. Assume that T is symmetric and that o e, is cartesian. Then,

" ¥a,
¥
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<T(<xi)iozj> =ay; = <°_‘i I T(e;)> = <T(aj)lai> =a,

shows that the matrix A for T is symmetric.

“Now assume that A is symmetric. Then

Tl ) loy> =&y, =& = <T(ay) lo, > = <o; 1T(e))>

Hence, <T(Z g;¢; ) |1Z b,a;> = % % ab, <T(ozi)|ozj> =% 2 a b.Xa 1T{ex.}> =
i § i J 1 J
<Za, q lT(EbJ.ozj>, i.e., T is symmetric. 0O

Theorem 20. Let T be a symmetric map on the finite dimensional Euclidean

space V. Then T admits a cartesian eigenbase.

Proof.-We first need to show that the minimal polynomial p(x) for T has only
linear factors of multiplicity one. Assume x? - 2ax + a’ + b’Ip(x) where
b # 0. Then there is a vector « # o such that (T? -2aT + a%).x = -bZ.

Hence,
Q(T? -28T + 8%)uxtl o> = ~b*<ayad, <(T-a)’alod = <(T-a)al (T-8)o> = ~b* <oy

Now, in <(T-a)x|(T-a)a> = -b%<a,0> the right-hand side is negative while the
left-hand side is non-negative. This is a contradiction. Hence, all
irreducible factors of p(x) have to be linear. Now assume that (z-a)®ip(x).

Then there is a vector « such that (T - a)z.a = g but (T - a).ax # 0. But in
(T - a)’aloy = (T - a).x(T - a).o

the left-hand side is zero while the right-hand side is positive. This is a
contradlctlon.

',Now we know that V admits a decomposition 1nto eigenspaces E For each of
these elgensPaces we can choose a cartesian base. We can combine these bases
to a basis of V. We are done if we can show that eigenvectors belonging to
different eigenvalues are perpendicular. Assume that ¢ and d are different
eigenvalues and « and g eigenvectors for c and d, respectively. We then have

T(a) = c.ty, T(B) = d.f and
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<T(a) 18> = <cax|B> = <l T(B)> = <xld.B>, Leeny Ce <> = delar,B>

Because of ¢ # d one concludes <x,8> = 0. O

Assume that A is a symmetric matrix with real entrles."‘lTet—T""b'e--the-—linear ,

"'"M’*w—map which—has--matrix A with _respect to the unit vectors. There is a

cartesian basis such that the matrix for T is a diagonal matrix D and A and

D are conjugate via an orthogonal matrix C:

Corollary. Let A € R™® be symmetric. Then there is an orthogonal matrix C

such that D = C*cA-C is a diagonal matrix. u]
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