Synopsis of cyclic groups

A group *C* is called *cyclic* if it is generated by one element. If *x* is a generator for *C* we write $C = \langle x \rangle$. If *G* is any group and $x \in G$ then the cyclic subgroup generated by *x* is

$$C = \{x^n | n \in \mathbb{Z}\}$$

Clearly, $\langle x \rangle$ must contain all these powers of x and they are closed in G :

$$x^{n}x^{m} = x^{n+n}$$
$$(x^{n})^{-n} = x^{-n}$$
$$x^{0} = e$$

Theorem The following statements about the cyclic group $C = \{x^n | n \in \mathbb{Z}\}$ are equivalent.

1. **a**) $x^n = x^m$ only if m = n.

b) *C* is infinite.

Proof. We clearly have that a) implies b). Now assume that a) is false. That is, there are $m \neq n$ such that $x^m = x^n$. We may assume that m > n. Then $x^{m-n} = e$ and therefore the set $E = \{k | k > 0, x^k = e\}$ is non-empty. Let

$$n = \min E$$

Then n > 0 and $x^n = e$. We claim that for every $x^m \in C$ there is some $r, 0 \le r < n$ such that

$$x^m = x^r, 0 \le r < n$$

Indeed, m = qn + r where $0 \le r < n$. It follows that

 $x^m = x^{qn+r} = x^{qn}x^r = (x^n)^q x^r = x^r$. Thus in this case the group *C* is finite with at most *n*-many elements. Moreover, we have for $0 \le s_1 < s_2 < n$ that $x^{s_1} \ne x^{s_2}$. Otherwise $x^{s_2-s_1} = x^s = e$ where $0 \le s < n$ But this is impossible, *n* was the smallest positive number for which $x^n = e$. Hence in this case we have that $C = \{x^{0}, x, x^2, \dots, x^{n-1}\}$ and is a finite cyclic group of order *n*.

Corollary. Let $C = \langle x \rangle$ be a cyclic group generated by some element *x*. Then we either have that

$$\mathbb{Z} \to C = \{x^n | n \in Z\}, n \mapsto x^n$$

Is an isomorphism between the additive group of integers and the infinite cyclic group C Or, in case that C is finite of order n then

$$\mathbb{Z}_n = \{ [0]_n, [1]_n, \dots, [n-1]_n \to C = \{ x^0, x, \dots, x^{n-1} \}, [r]_n \mapsto x'$$

is an isomorphism between the additive group of integers mod n and the finite group *C* of order *n*.

Facts on infinite cyclic groups. The additive group \mathbb{Z} has only two generators 1 and -1. Therefore any infinite cyclic group $\langle x \rangle$ has only two generators, namely x and x^{-1} .

Let *H* be a subgroup of the additive group \mathbb{Z} of integers. Then *H* is cyclic and of the

form $n\mathbb{Z}$. In case that $H = \{0\}$ then n = 0, otherwise let *n* be the smallest positive element in *H*. Clearly $n\mathbb{Z} \subseteq H$. For the converse inclusion, let $m \in H$. Then $m = qn + r, 0 \leq r < n$. Because $m \in H, qn \in H$ we have that $r = (m - qn) \in H$. The element *r* cannot be positive because r < n and *n* was the smallest positive element in *H*. Thus r = 0 and *m* must be divisible by *n*, that is $H \subseteq n\mathbb{Z}$. We have that $n\mathbb{Z} = \langle n \rangle$, thus subgroups of the additive group \mathbb{Z} are all cyclic.

Theorem Let $C = \langle x \rangle$ be an infinite cyclic group. Then any subgroup H of C which is different from $\{e\}$ is infinite cyclic and $H = \langle x^n \rangle$ where n is the smallest positive exponent n such that $x^n \in H$.

Corollary $n\mathbb{Z} \cap m\mathbb{Z} = k\mathbb{Z}$ where k is the lowest common multiple of n and .m.

Indeed $nZ \supseteq kZ$ iff k is multiple of n. Thus $n\mathbb{Z} \cap m\mathbb{Z} \supseteq l\mathbb{Z}$ makes l a multiple of m as well as n. Any multiple l of m and n is a multiple of the lowest common multiple k. Thus kZ is the largest subgroup contained in $n\mathbb{Z}$ and $m\mathbb{Z}$.

Facts on finite cyclic groups.

Theorem Let $C = \langle x \rangle$ be an finite cyclic group of order *n*. Then any subgroup of *C* is cyclic and if different from $\{e\}$ one has that $H = \langle x^m \rangle$ where *m* is the smallest positive exponent *k* such that $x^k \in H$.

Theorem The subgroups H of \mathbb{Z}_n are of the form $< [d]_n >$ where d is a divisor of n. For the proof we only have to show that $< [m]_n > = < [d]_n >$ where $d = \gcd(m, n)$. We know that d = xm + yn. Therefore $[d]_n = [xm]_n + [yn]_n$. We obviously have

 $[yn]_n = [0]_n$. Thus $[d] \in <[m]_n >$. On the other hand, as the *gcd* of *m* and *n* we have that d|m and therefore $[m]_n \in <[d]_n >$. This gives $<[m]_n > = <[d]_n >$.

If *d* is a divisor of *n* then $< [d]_n > has \frac{n}{d}$ many elements

The order o(x) of an element x is the order of the cyclic group $\langle x \rangle$ in case that $\langle x \rangle$ is finite. It is the smallest positive *n* where $x^n = e$.

Theorem If *d* is a divisor of *n* then $< [d]_n >$ has $\frac{n}{d}$ – many elements in \mathbb{Z}_n . Thus $o([m]_n) = \frac{n}{(m,n)}$.

Examples. Let $G = \mathbb{Z}_{12}$ What is the order of $[8]_{12}$. Of course we can list the elements of < [8] >. They are [8], [16] = [4], [12] = [0]. Thus $ord[8]_{12} = 3$. We have < [8] > = < [gcd(8, 12)] > = < [4] > and $ord[4]_{12} = \frac{12}{4} = 3$.

Exercise 4.15 in the book asks for gcd(123,321). Calculations lead to $(123,321) = 3 = 47 \cdot 123 - 18 \cdot 321$. Thus $< [123]_{321} >=< [3]_{321} >$ and $ord < [3]_{321} >= \frac{321}{3} = 107$ and $< [321]_{123} >=< [3]_{123} >$ and $ord(< [3]_{123} >= \frac{123}{3} = 41$ Problem 5.21 in the book is the following. Given a cyclic group G =< x > of order n. Find a condition on the integers r and s that is equivalent to $< x^r >\subseteq < x^s >$. We can identify G with \mathbb{Z}_n and x^r with $[r]_n$ and x^s with $[s]_n$. We have that $< [r]_n >=< [(r,n)]_n >$ and $< [s]_n > = < [(s,n)]_n >$ We now have that $< [(r,n)]_n >\subseteq < [(s,n)]_n >$ is equivalent to

and $\langle [s]_n \rangle = \langle [(s,n)]_n \rangle$ we now have that $\langle [(r,n)]_n \rangle \subseteq \langle [(s,n)|(r,n)]$. This is the solution of the problem.