
Problems and Comments on Modeling Computation

Rosen, Fifth Edition: Chapter 11; Sixth Edition:
Chapter 12

Finite-State Machines with No Output

Section 11.3, Problems: 1, 2, 3, 4, 5, 7, 8, 9, 12,13, 14, 29
(fifth edition); Section 12.3, Problems: 1, 2, 3, 4, 5, 7, 8, 9,
12,13, 14, 29 (sixth edition)
The notations in the Rosen book are non-standard. I follow more the Sipser book
which I highly recommend for additional reading.
Let  be any finite set.  will be called the alphabet. Finite strings with elements from
 are called the words over .The empty string  is also considered as a word. ∗ is
the set of all words over .For example, let   0,1. Then
∗  , 0, 1,00,01,10,11,000,001,010,100,011,101,110,111,… is the set of all
bitstrings.
The number of elements in a word over  is called its length and denoted as lw. If 
has n elements, then there are nm many words of length m.For example, there are
8  23 of bitstrings of length 3.
If w and w′ are words, then the string ww′ is called the product or concatenation
w ∗ w′ of w and w′. We have that this product operation on ∗ is associative, that is
w ∗ w′ ∗ w" w ∗ w′ ∗ w" , and clearly w  w  w. That is, the mathematical
structure   ,∗, is a semi group (associative algebra) with unit.
Let A and B be subsets of ∗. Then the concatenation of A and B is the set of all
products ww′ where w ∈ A and w′ ∈ B. We have that A  A   while
A  A  A.
We define A0  ,An1  AAn. Thus A1  AA0  A  A. We define

A∗  
n≥0

An  w0w1wn−1 ∣ w ∈ A

For A  , this definition is consistent with the previous one. Any subset of ∗ is called
a language over the alphabet .
Let  be the Latin alphabet and E be the set of words of an English dictionary. Then E
is a subset of the English language. Not all English words might be covered.
Let   0,1,2,… , 9. Then every element of N  ∗\ can be interpreted as a
natural number in decimal notation, ignoring leading zeroes. Certain subsets of N are
easy to recognize, like the set of numbers that are divisible by 5. Other subsets are
much more difficult to recognize, like the set P of those numbers that occur as a
segment after the decimal point in the expansion of
  3.1459. . . .P  1,14,145,1459,…

1

We are going to describe those sets which are recognizable by certain finite devices,
the so called finite automata. The description of a finite automaton or finite state
machine has five ingredients:
1. A finite non-empty set S of states.
2. A finite non-empty set  of input symbols. It is also called the alphabet.
3. A transition function  : On the input  ∈ , a state s ∈ S is transformed into to a
state s′ ∈ S, that is ∂ : S   → S, ∂s,  s′.
4. An initial or start state s0.
5. A subset F of S of final or accept states.
Thus M may be perceived a a five tuple M  S,,, s0,F. The transition function is
given by a table and a set F:

∂ 0   j  n−1

s0 s0,0  s0, j  s0,n−1

     

si si,0  si, j  si,n−1

     

sm−1 sm−1,0  sm−1,0 …… sm−1,n−1

F  …

The central concept of this section is the one of a computation. Let w be a word over
, that is an element of ∗,w  w1w2wk.Then w is accepted by M if rk ∈ F where
the sequence r0, r1,… , rk is defined by r0  s0, the initial state, and where
r1  s0,w1, r2  r1,w2,… , ri1  ri,wi1,… , rk  rk−1,wk :

s0  r0
w1→ r1

w2→ r2 →… rk−1
wk→ rk

w1 puts the initial state into state r1, then r1 is put into state r2 by signal w2, and finally
wk puts rk−1 into state rk ∈ F.
For any automaton M we then have the language recognized by M:

LM  w ∣ w is accepted by M

Definition A language A ⊆ ∗ is regular if there is some finite automaton such that
A  LM.

For any alphabet ,  and ∗ are regular. Just choose any automaton M0 where
F   in order to have no word accepted; and an automaton M1 where F  S in order
to have every word accepted.

Exercise Find an automaton for , ∈ .
The empty string  is accepted in case that the initial state s0 is a final state. That
makes sense, the state s of the machine M should not change, if there is no input
signal. Thus  is accepted if the the machine is in an acceptance state.
We can even think that  is augmented by  to     . Then s,  s holds for
every s.
What we have defined as an automaton is also called a deterministic automaton. For
every s ∈ S and every  ∈ e, ds,  s′ is defined for a unique state s′.

2

For a non-deterministic automaton the transition function s, is a set of states,
that is a subset of S, hence an element of the power set PS of S. Of course, we allow
s, to be the empty set. We also include  as an input signal and for a
non-deterministic automaton one always has that s, ⊇ s. If s′ ∈ s, then we
say that s′ has been obtained from s by an  −move.
As before, we need five ingredients for the formal definition of a non-deterministic
automaton:
1. A finite non-empty set S of states.
2. A finite non-empty set  of input symbols. It is also called the alphabet.
3. A transition function  : S   → PS,s, ⊇ s.
4. An initial or start state s0.
5. A subset F of S of final or accept states.
A finite non-determinisic automaton NDM accepts a word w  w1w2wk ∈ ∗ if
w  v1v2vl and if there is some sequence r0, r1,… , rl of states in S such that
1. r0  s0

2. ri1 ∈ ri,vi1
3. rl ∈ F
That w  w1w2wk  v1v2vl means that the strings w1w2wk and v1v2vl differ
only by insertions of a number of  moves.
The definition of the language recognized by a non-deterministic automaton is as
before

Here is the graph of a non-deterministic automaton:

3

The non-deterministic automaton DFM1, with final set F  s3
The initial state is s0.The word w  11  11 is accepted through the calculation
r0  s0, r1  s1 ∈ s0, 1  s0, s1, r2  s2 ∈ s1,, r3  s3 ∈ s2, 1
In order to understand the process of a non-deterministic calculation better, we need
the following

Definition For any set R of states let
ER  t ∣ t can be reached from some s ∈ R by zero or more  − moves

Es0 is the set of all states which can serve as initial state. An -move may change
s0 to s′ another one s′ to s′′etc. :

4

A picture of Es0

For a nondeterministic calculation of w  w1w2wk the role of s0 may be played by
any of the elements of Es0. The first input w1 is equal to w1 and thus is
processed at some s ∈ Es0. It is important that s can be any element of Es0.
We then can get into a state r ∈ s,w1. Because w1  w1, the next state r can
be any element of Es,w1. The states r which we can get from input w1 are
elements of the sets Es,w1 where s ∈ Es0. If one of the sets Es,w1
contains an element of F then the word w  w1 got accepted by the non-determinist
automaton. Because then there is a path leading from s0 to some s ∈ Es0 through
some  −moves, then via w1 to some t ∈ Es,w1 and then via  −moves to some
f ∈ F.
This process can be thought of that w1 causes a transition from the initial set Es0
to the set Es,w1|s ∈ Es0.
We are now ready to define the deterministic automaton DM for the
non-deterministic automaton NDM:
1. The set of states of DM is the powerset PS of the set S.That is the states of
DM are subsets R of the set S of states for DM.The empty subset  of S is of
course included.
2. The transition function for DM is

 ′R,  Er,|r ∈ R

where, of course,  is the transition function for NDM.

5

3. The initial set for DM is Es0
4. The set of final states consists of all those sets R which contain an element of F.

The following is now quite evident:
Theorem The deterministic automaton DM for the non-deterministic automaton

NDM recognizes exactly the same words as DM.
Let   1,… ,n be an alphabet. Then every singleton  i is regular. A
non-deterministic automaton NDD with two states, s0 and s1, and transition function
that under  sends the initial state s0 to the final state s1 does the job. Let for example
  0,1,   0. Then the deterministic automaton has four states:
,s0,s1,s0, s1. The initial state is s0 and there are now two final states s1
and s0, s1. The transition function is given by

 0 1

  

so s1 

s1  

s0, s1 s1 

Here are the non-deterministic and deterministic automata NDM and DM that
recognize 0:

6

Automata for 0
The non-deterministic automaton NDM for 0 is what is called a partial
automaton. A partial automaton is like a deterministic one, but its transition function is
only partially defined. A partial automaton can be made deterministic by adding one
additional non-final state, sometime called failure state . In case that s, is not
defined, define s,  . Of course, ,  , for every  ∈  :

7

Deterministic automaton for 0 from PM
If the set A is regular then Ac  ∗\A  w ∣ w ∈ ∗,w ∉ A is regular. For the proof,
we choose a deterministic automaton for A and change its set F of final states to S\A. If
we start with a nondeterministic automaton for A, then we need to find its deterministic
equivalent first. The partial automaton for 0 has only one final state, s1, and the
complement is S\s1  s0.The partial automaton PM with s0 as set of final
states would recognize only .
The complement of A  0 in 0,1∗ is , 1w, 0w′ where w is any word,  included,
and w′ is any word of positive length. In the automaton DM for 0 we change the
set F  s1 to S\F  s0,. Having the initial state s0 also as a final state, makes 
accepted. The computation s0

1
→  recognizes the word w  1, and the words 1w are

recognized by the computations s0
1
→ 

w
→ ; the computations s0

0
→ s1

0,1
→ 

w
→ 

recognize all words of length at least two which start with 0.

8

Machines for concatenation, union and star
If a deterministic machine M recognizes the language A and a deterministic machine
N recognizes B then we can easily define a nondeterministic L machine which
recognizes A ∘ B. In the picture we indicate the start and final states by larger circles,
start at the top and final states at the bottom. The machine L has as its set of states
the union of states of M and N.Of course, we may assume that M and N have no
states in common. For every final state of M there is an  −move to the start state of N.
If a word w is accepted by L, then w  w1w2 where w1 is accepted by M, that is input
w1 ends at a final state of M and then an  −move is yields the start state of N and
processing of w2 must yield to a final state because w is accepted by L.That is, the
language for L is contained in A ∘ B. On the other hand if w  w1 ∘ w2 where w1 ∈ A
and w2 ∈ B then w  w1w2  w1w2 shows that w is recognized by L.
A non-deterministic machine L that recognizes A  B is easily constructed by taking a
new start state and  −moves that connect this new state with he initial states of
machines for A and B. A word w then is accepted if it is accepted by one of the
machines for A or B.
The non-deterministic machine L for A∗ needs a new start state which is also a final
state to make sure that  is accepted. This new start state is connected by an  −move
with the start state of the machine N for A. Every final state of N is connected by an
 −move with the start state for N.Clearly a word w is recognized by L either it is  or if
w  w1w2wk where wi ∈ A. That is w ∈ A∗.

Theorem The set R∗ of regular languages over  contains ,∗, ,, ∈ ,
and is closed under taking complements, finite unions, concatenations and the star

9

operation.

Corollary R∗ is closed under finite intersections. That is R∗ is a boolean algebra
of subsets of the powerset algebra P∗.

Proof Closure under finite intersections follows from DeMorgan laws:
A ∩ B  Ac  Bcc.

.
Are there languages that are not recognized by any automaton? That is, are there
languages that are not regular? Indeed, there are non-regular languages.
The simplest example of such a language is the set of all words 0n1n over the alphabet
  0,1. The proof is quite simple. Assume that there is a deterministic automaton
M which recognizes the language L  w|w  0n1n.We are going to show that M
necessarily recognizes words that are not of the form 0n1n.The proof is based on a
pumping argument.
Let k be the number of states of M and let w  02k12k.Because w is recognized by M,
we have a computation

s0  r0
0
→ r1

0
→ r2 →… r2k−1

0
→ r2k

1
→ r2k1

1
→…

1
→ r4k

where s0 is the initial state an…d where r4k is a final state. But amongst the first 2k
states for computing the head 02k of w  02k12k there must be a repetition, say in

s0  r0
0
→ r1

0
→ r2 →… r2k−1

0
→ r2k

we have that rj  rjs. But then M recognizes 02ks12k where we may think that
s −many zeroes have been inserted after the first j −zeroes.

Language Recognition

Section 11.4, Problems 1, 2, 3, 4, 7, 8 (a,b,c) Sectiom 12.4
Problems 1, 4, 7, 8, 13, 14 (a,b,c) (sixth edition)

Let  be an alphabet. We consider , and  just as auxiliary "symbols" that don’t
belong to . The set of regular expressions is defined recursively:
1.  is regular.
2. Each  ∈  is regular;  is regular.
3. Assume that S and T are regular expressions. Then

S ∨ T, ST,S∗

are regular.

A string R is regular if it is obtained by finitely many applications of the rules 1-3.
Example  ∨ ∗, ,∗,  ∨  are regular. If   ,, are the elements of

, then R   ∨  ∨  and R∗   ∨  ∨  are regular.
Let REG denote the set of regular expressions. We define recursively a map L from

10

the set REG of regular expressions into the set R of regular sets:
L : REG → R,R  LR
  ,  ,  ,

LS ∨ T  LS  LT,LST  LS ∘ LT,LS∗  LS∗

The empty set , and the singletons  and  are regular. Because the union of
regular sets is regular, LS ∨ T is regular for regular expressions S and T.A similar
argument applies for concatenation and the star operation to see that L is a map from
the regualr expressions into the set of regular sets.

Example L ∨ ∗  L ∨ ∗ ∘ L  L  L∗ ∘ L    ∗ ∘
of all words that end in .

From a regular expression R we can in a systematic fashion construct a non
deterministic automaton for the regular set LR.

Example Find a non-determinist automaton for the set of all words in   ,, that
end in , that is for L ∨ ∗.

11

Machine for R1   ∨ ∗ ∘ 
Initial states have been underlined once, final states underlined twice. Leftmost states

12

are always initial.
By abuse of language, we may identify regular sets A,B with their recognizing
non-deterministic automata.
Recall the basic rules:
In order to construct A  B, we introduce a new initial state s and connect s by means
of  −moves with the initial states u0 of A and v0 of B, respectivley. The set of final
states of A  B is the union of the final states of A and B.
In order to construct A ∘ B we connect all final states of A with the initial state v0 of
B.The final states of B are the final states of B.
For A∗ we need a new initial state s which is also a final state of A∗. By doing this is,
we have recognized .The new initial state s is connected by an  −move with the
initial state of A.The final states of A∗ are the final states of A.

Exercise Find a non-deterministic automaton for all bit strings of even length. We first
have to find a regular expression R for this set. Now, any such string can be
divided into bit strings of length 2, that is into strings 00,01,10,11. Hence
R  00 ∨ 01 ∨ 10 ∨ 11∗. Then apply the basic rules for the construction of a
NDR.

We have seen that for every regular expression R we can find an automaton that
recognizes the set LR. However, the converse is also true. Given any regular set A
then there is some regular expression R such that LR  A. Both statements are the
content of Kleene’s theorem:

Theorem Regular expressions correspond to regular sets. That is, every regular
expression R describes a unique regular set LR,and for every regular set A there
is some regular expression R such that LR  A.

Proof Let A be any regular set. It is recognized by some deterministic or
non-deterministic automaton M. We somehow must manage to find a procedure to
read off from any non-determinist automaton M the regular expression it
recognizes. In some cases this is easy, like in Figure 1:

13

Figure 1
Clearly, the machine on top recognizes the set with regular expression a ∨ 

while the other machine recognizes in addition to this set also , that is,
it recognizes  ∨ a ∨ . By abuse of language, we have identified an

expression with its regular set. Slightly more complicated is the automaton on top
of Figure 2:

14

15

It recognizes the set  ∨ ∗a ∨ .
By adding a new final state, F, and  −moves from the old fianl states, s2 and s0

we have gotten an automaton with exactly one final state. Similarly, we may add a
new initial state, S, and an  −move to s0.By doing this we have arrived at an
automaton where there is no incoming arrow to the start state S, and no outgoing
arrow from the unique final state F. This can be achieved for any
non-deterministic automaton without changing its accept set.

If we have several arrows 1,… ,n going from a state s to a different state t
then we may combine them to one single arrow, but labelled by the regular
expression 1 ∨…n. Similarly for loops about a state s. If there is no arrow from s
to t then we can introduce one and label it by 0. If there is no loop about s then we
can add one and label it by . See Figure 3:

Figure 3
It is now cllear that we can convert any non-deterministic automaton into one

which has exactly one final state F and where there is no incoming arrow into the
start state S and no outgoing arrow from F. For every pair of states s and t, where
s ≠ F and t ≠ S there is exactly one aroow labelled by some regular expression.

We can formally define a non-deterministic generalized finite automaton,
GNDM as a five tuple:

16

M  S,,,qs,qa,where
 : Q\qa  Q\qs → REG,qi,qj  R

for which we write qi
R
→ qj,qi ≠ qa,qj ≠ qs

The machine M accepts w  w1…wk,wi ∈ ∗, if there is a sequence of states
q0,q1,…qk such that q0  qs  start state, qk  qa  accept state and for each
i  1,…k one has that wi ∈ LRi,Ri  qi−1,qi.

In case that M has only two states, that is Q  qs  S,qa  F,
R  S,F,S R

→ T, we have that a word w is accepted if and only if w ∈ LR.
Here is an example of a computation for the generalized automaton in Figure 4:

Figure 4
w   is computed along states qsq0q1q1q1q2q2qa.We have that

 ∈ L  ,  qs,q0; ∈ L,  q0,q1; ∈ L,  q1,q1;
 ∈ L,  q1,q1; ∈ L ∨ , ∨   q1,q2, ∈ q2,q2, ∈ L, 

The proof of Kleene’s Theorem will be finished if we can show that every
generalized automaton can be converted into one with only two states. This can be
done because we can convert any generalized automaton with more than two states
into an equivalent one which has one state less. Let M be a generalized automaton
with k states where k  2.we pick any state q which is different from qs and qa.
we call this state qrip because we "rip" it out. In order to understand how it works,
recall that for a generalized automaton there is exactly one arrow qi

R
→ qj as long

as qi ≠ qa and qj ≠ qs. In Figure 5, we show how the uique arrow with label R4
which goes from qi to qj hjas to be replaced becasause of ripping qrip, using the
unique arrows to qrip, about qrip, and from qrip.

17

Figure 5
We can continue this process until we get an automaton with two states and the

regular expression R for the regular set A.This concludes the proof.
Figure 6 illustrates this process

18

Figure 6
In Figure 7 we have a somewhat more complicated example:

19

Figure 7
Let A be a regular set. We know that its complement Ac is also regular. In order to find
the regular expression for Ac, say starting with a non-deterministic automaton for N for
A, one first has to find a deterministic automaton M from N.By taking the complement
of its acceptance set, one gets a deterministic automaton for Ac.Then, as before, one
constructs a generalized automaton from which one gets a regular expression Rc for
Ac, which is of course an expression in ∘,∨, and ∗..There is no rule to get from the
regular expression R an expression Rc such that LRc  Ac. A similar remark applies
to the regular expression, call it R ∧ S, for the intersection of the regular sets

20

A  LR and B  LS. There is no general formula for R ∧ S, using R and S and the
operations ∘,∨, and ∗.of the Kleene algebra. We only know that for every choice of R
and S there is such an expression.

Section 11.1, Problems 1, 2, 3, 5, 6, 14, 15, 16, 17, Sectiom
12.1 Problems 1, 2, 3, 7, 8, 20, 21, 22, 23 ,(sixth edition)

In the previous sections we have learned that regular languages can be recognized by
finite state machines and compactly described by elements of a certain boolean
algebra, the Kleene algebra.
Regular languages can also be described by a generation process which involves an
alphabet and "production rules". In order to do this one starts with the general concept
of a phrase-structure grammar G which defines a language LG.Restrictions on the
production rules define then the important classes of "context-free" languages and the
"regular languages". As a main theorem we will prove Chomsky’s Theorem which
characterizes regular languages as those that are generated by "regular grammars".
A phrase-structure grammar is a four tuple G  V,T,S,P where
1. V is a finite, non-empty set;
2. T is a non-empty subset of V of terminals;
3. S is a element of V\T, the start symbol ;
4. P is a finite set of productions.
Now, what are productions? As usual, V∗ is the set of all words over the alphabet V.A
production then is a set of ordered pairs w,w′. That is

P ⊆ V∗  V∗

Instead of z, z′ ∈ P one says that z → z′ is a production of G.By definition, z and z′ are
words over V.
The elements of V\T may be thought of as variables and usually denoted by capital
Latin letters, like A,B,C,… , while terminals are denoted by lower case letters, like
a,b,c,… .
In z → z′, the right-hand side may be the empty word .However, we assume that the
left-hand side z is never the empty string.
Let G be a given phrase-structure grammar, z → z′ be a production of G and w be a
word over V, which has z as a substring. That is, w  lzr.Here l and r stand for left and
right, respectively. Then we say that the word w′  lz′r is directly derivable from w and
write w  w′.

Example V  S, 0, 1;S → 0S1 ,S →   P. Then 0S1  00S11 is a direct
derivation. Here T  0,1 is the set of terminals.

For a sequence of direct derivations w0  w1,w1  w2,… ,wn−1  wn we write
w0

∗
 wn, and say that w is derivable from w0.
Example Continuing the last example,we have that

S  0S1  00S11  000S111  0000S1111  00001111 is a derivation of

21

0000111 from S.
Let G be a phase-structure grammar. The set of words, which contain only terminals
and which are derivable from S , is called the language LG generated by G :

LG  w ∈ T∗| S
∗
 w

Example For V  S, 0, 1;S → 0S1 ,S →   P we obviously have that
LG  0n1n| n ∈ ℕ.We have shown before that LG is not recognizable by any
finite state automaton.

Example Using again the same V  S, 0, 1 but a different set of productions,
S → , S → 0S,S → S1, we see that S  0S  0S1. If we now use S → 0S, then
we add a 0 to the left of S, if we use S → S1, then we add a 1 to the right of
S : S  0S  0S1  00S1  000S1  000S11  00011. It is quite obvious
that this grammer generates the regular language LG  0n1m| n,m ∈ ℕ

A phrase-structure grammar is called context-free if all productions are of the form
A → w, where A is a variable (non-terminal) symbol of V. That is an application of such
a rule replaces an occurrence of a variable A in a string  by w, where w is a string of
elements of V.
A grammar is called context-sensitive if the rules are of the form lAr → lwr. That is, if a
variable A occurs in a string  and if it is surrounded by the string l from the left and by
the string r from the right, then A can be replaced by w.
Recall that the productions of an arbitrary phrase-structure grammar are of the form
z → z′ which means that a substring z in a word  can be replaced by z′. If theree are
no restrictions on productions, then the phrase-structure grammar is called of type 0.
Context-sensitive grammars are also called of type 1. A variable A can be replaced by
w only within context l and r.
Context-free grammars are called of type 2. The rules of a context-free grammar allow
replacement of A in a string  by the string w.

Remark Replacement of a variable A in a string by w is different from what we do in
mathematics when we substitute a variable x by w.For example, in x  x sinx, a
substitution of x by  yields    sin. Each occurrence of x in the expression  
x  x sinx must be replaced by .An application of a production A → w in a
string s means that some occurences (but not neccessarily all) of A in  have been
replaced by w.

Context free languages can be used for the description of formal expressions, like
terms in algebra. We wish to formalize that sums and products of terms are terms.
This suggests rules:

S → S  S,S → S  S,S → a|b|c|
The vocabulary of our grammar for producing terms contains only one variable, S, and
terminals T  , ,, , 0,a,b,c.Thus V  S  T,Of course,  stands for the left
paranthesis ,  for the right paranthesis,  is the addition symbol and  the
multiplication symbol. The terminals a,b,c are thought of as "variables" ranges over an
algebraic domain.
We use shorthand A → w1|w2… for A → w1,A → w2,…

22

Example S  S  S  S  S  S  S  S  S  S  a  S  S  S …
shows that a  b  a  c ∈ LG.The language LG consists of all algebraic
expressions involving addition and multiplication in a,b,c.

In order to describe algebraic expression in any number of variables for a particular
structure, like the natural numbers ℕ with addition and multiplication, ℕ  N,, , we
need to generate infinitely many variables and all natural numbers out of a finite
vocabulary. This is not much of a problem. In addition to rules generating terms, we
need rules to generate variables and numerals

S → N,N → 0N,N → ,S → U,U → xN, .
The idea is that a sequence of n −many zeroes stands for the numeral n, and a
followed by m −many zeroes stands for the variable xm.

Exercise 1 Define explicitly a phrase-structure grammar whose language LG is
the set of all terms in variables xm and natural numbers. In particular derive
x3  2  3  1.

Theorem Let L  LG,L1  LG1,L2  LG2 be languages that are generated by
context-free phrase-structure grammars. Then L∗,L1 ∘ L2 and L1  L2 are context
free.

This is an assigned exercise (15, 21 respectively).
In order to prove the exercise, one adds a new start symbol S0 and one new rule r0.
Here is what you have to do for L∗ :The grammar G∗ for L∗ is
G∗  V  S0,T,S0,P  r0 where r0  S0 → S0S|.
Recall that L∗ consists of any number of concatenations of words in L.That is, if
S
∗
 w1,S

∗
 w2,…S

∗
 wn, then w1w2wn ∈ L∗. Now, n −many applications of rule r0

yield S0  S0S  S0SS  S0SSS  SSS. And then using the derivation in G we
get S0

∗
 w1w2wn.

The other cases are quite similar. Of course, we may assume that the vocabularies V1
and V2 for G1 and G2 are disjoint.

A phrase structure grammar is called a regular grammar if all rules are of the form
A → aB or A → a where A is a non-terminal symbol and a is a terminal symbol. If S is
the start symbol, also S →  is allowed.
Exercise 2 Show that the rules of a regular grammars can be generalized to

A → wB, A → w, S →  where w is a non-empty word over T

Regular grammars generate regular languages and vice versa. This is an important
theorem The key is to associate to the transition function of an automaton M rules of
a regular grammar. Thus let

M S,,, s0,F
be a finite state machine. In order to get a clue what G should be we want to associate
to a transition a, s  s′ a rule. The natural choice is the rule s → as′.Of course that

23

makes sense only if s and s′ are non-teminal symbols and a a terminal symbol. If s′ is a
final state then the corresponding rule should be s → a. Thus we define as set V of
our grammar G the union V  S   where the set T of terminal symbols is T  .The
start symbol of G should be the start state s0 of M.
As an illustration how this works, assume that the word abc is recognized by the
machine M, that is we have a sequence of states:

s0
a
→ s1

b
→ s2

c
→ s3 ∈ F

This translates into a derivation
s0  as1  abs2  abc

This is fine as long s3 is not s0. In case that s0 is a final state we have that the empty
word is accepted, and we must add the rule s0 →  in order to have LM  LG.
Thus, in case that a, s  s0 ∈ F we define rules for G, s → as0, s0 → .
For our example, in case that s3  s0 ∈ F we get s0  as1  abs2  abcs0 and we
either can finish with s0  as1  abs2  abc, using the rule s0 →  or continue
s0  as1  abs2  abcs0  abcas1  abcabs2  abcabcs0 etc.
It is quite obvious that LM  LG.
Now assume that we are given a regular grammar G  V,T,S,P. We wish to define a
machine M S,,, s0,F such that LM  LG.The start state s0 of M should be the
start symbol of G.That is:

S of G  s0 of M
The set V of G consist of variables A and the set T of terminal symbols. We take as the
set S of non-final states for M the subset of non-terminal symbols of V. That is

V\T of G  S\F of M
The set T of terminals a of G is the input alphabet  of M.That is

T of G   of M
Now, how do production rules translate into the definition of ? First, our machine will
be non-deterministic. For a rule A → aB we define a,A  B. Of course we also may
have a rule A → aB. So, a,A  B is allowed. Thus, M will be non-deterministic. That
is,

If A → aB is a production of G then a,A  B is a transition for M
Now, what should we do about a production A → a? It is quite natural to say that
a,A should be a final state. It cannot be a variable. So we add  to the set of states.

If A → a is a production of G then a,A   is a transition for M
In case that S →  is a production of G then we have to add S as a final state:
The set of final states for M is just  and , s0  S in case that S →  is a production of G

Let for example be
S  S0  aS1  abS2  abcS0  abcaS1  abcabS2  abcabcS0  abcabc be a
chain of productions where we used S0 → aS1,S1 → bS2,S2 → c,S2 → cS0,S0 → . This
yields for M the sequence of state transitions

24

S0
a
 S1

b
 S2

c
 S0

a
 S1

b
 S2

c
 S0


 

Thus we have demonstrated the following theorem of Chomsky:
Theorem A set is regular if and only if it is generated by a regular grammar.

25

