
Problems and Comments on Induction
Chapter 4

Section 4.1, Problems: 25, 32, 35, 47
Comments. We will take the following for granted: Let S be a non-empty subset of
natural numbers. Then S contains a smallest element. This is called the well-ordering
principle. The argument for showing this principle is clear. Let n be any element in
S.Because S is non-empty, there must be such an n. If n is already the smallest
element in S, we are done. Otherwise, there is a smaller element n1in S. If n1 is the
smallest element in S, we are done. Otherwise there is a smaller element n2 in S.
Because we cannot have an infinite descending chain n  n1  n2  n3  of natural
numbers smaller than n, we must arrive this way at the smallest number in S.
From the well-ordering principle we can deduce the proof principle of Mathematical
Induction. In order to prove a statement about natural numbers, Pn, it is enough to
prove P0,which is the basis step, together with the inductive step, which is the
implication Pn → Pn  1. Indeed, if we had some n for which P would not be true,
then the set S  n| Pn would be non-empty. Thus S would have a least element,
m. This m cannot be 1, because P is true for 1. Thus m must have a predecessor,
m − 1, which is a natural number. But Pm − 1 is true. We have already chosen as
number m the smallest number for which P is not true, and m − 1 is smaller than m. But
then the inductive step: Pm − 1 → Pm yields that Pm must hold. But this is a
contradiction, P does not hold for m.
Example 11, p. 247, is a beautiful and non-trivial example of mathematical induction.
There is a second version of induction. Assume that we can show the following: P1
holds and Pn holds, in case that Pk holds for every k  n. Then P holds for all
natural numbers n. Indeed, assume that we had a number n for which P does not hold.
We take the smallest such number, n. It cannot be1. But by the choice of m, we have
Pk for all k  n. But then Pn holds, which is a contradiction.
This second principle of complete induction is often used in algebra. For example in
order to show that every natural number is a product of primes. We define 1 as the
empty product of primes. Then, if n is any natural number, it is either a prime, and we
are done, or it is the product of two smaller numbers n1 and n2. Assuming that every
number smaller than n is a product of primes, n1 as well as n2 are products of primes.
But then n  n1  n2 is a product of primes.
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